143. On the Inductive Dimension of Product Spaces

By Nobuo KIMURA

Hokkaido Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1963)

As is well known, the large inductive dimension of a topological space X, denoted by Ind X, is defined as follows. In case $X=\phi$, we put Ind X=-1, and define Ind $X\leq n$ for $n\geq 0$ inductively by the requirement that for any pair of a closed set F and an open set G with $F \subset G$ there exists an open set U such that $F \subset U \subset G$, Ind $(\overline{U}-U) \leq n-1$. Ind X=n means that we have Ind $X\leq n$ but not Ind $X\leq n-1$.

E. Čech [1] proved that the subset theorem and the sum theorem hold for the large inductive dimension of perfectly normal spaces. C. H. Dowker [2] generalized Čech's results mentioned above by proving that the subset theorem and the sum theorem hold still for the large inductive dimension of totally normal spaces. Here a normal space X is said to be *totally normal* (Dowker [2]) if each open subspace of X has a locally finite open covering by open subsets each of which is an F_{σ} set of X. Since every perfectly normal space is totally normal ([2]) Čech's results are included in Dowker's results.

As for the large inductive dimension of product spaces, in 1960 K. Nagami [6] proved the validity of the inequality

 $\operatorname{Ind} (X \times Y) \leq \operatorname{Ind} X + \operatorname{Ind} Y$

for the case where X is a perfectly normal, paracompact space and Y is a metrizable space. This seems to be the most general result known hitherto.

In the present note we shall establish that the above inequality holds still for the case where $X \times Y$ is a countably paracompact, totally normal space and Y is a metrizable space; this is stated as Theorem 4 below. If X is a perfectly normal space and Y a metrizable space, then $X \times Y$ is also perfectly normal as was proved in Morita [4] and hence $X \times Y$ is totally normal and countably paracompact. Thus Nagami's result is contained in our Theorem 4.

Our proof of Theorem 4 is based on two theorems; one is a theorem of K. Morita [5] on product spaces and the other is a generalized sum theorem which will be proved below as Theorem 3.

Our Theorem 3, which seems to be of some interest in itself, asserts that if $\{A_{\alpha}\}$ is a locally finite closed covering of a countably paracompact, totally normal space X and if $\operatorname{Ind} A_{\alpha} \leq n$ for each α then Ind $X \leq n$.

N. KIMURA

1. We can easily prove the following

Lemma 1. Let Y be a metric space with Ind $Y \leq n$. Then there is a countable family $\{\mathfrak{B}_i | i=1, 2, \cdots\}$ of locally finite open coverings $\mathfrak{B}_i = \{V_{i\alpha} | \alpha \in \Omega_i\}$ of Y such that Ind $\mathfrak{B}_r(V_{i\alpha}) \leq n-1$, and the diameter of $V_{i\alpha}$ is smaller than 2^{-i} for $\alpha \in \Omega_i$. Here $\mathfrak{B}_r(V_{i\alpha})$ means the boundary of $V_{i\alpha}$.

Let us put

$$W(\alpha_1, \cdots, \alpha_i) = V_{1\alpha_1} \cap \cdots \cap V_{i\alpha_i};$$

then the following theorem can be proved without the dimensional condition.

Theorem 1. ([5, Theorem 2.3]). $X \times Y$ is countably paracompact and normal if and only if (i) X is countably paracompact and normal, and (ii) for any family $\{G(\alpha_1, \dots, \alpha_i) | \alpha_{\nu} \in \Omega_{\nu}, i=1, 2, \dots\}$ of open sets of X such that $\{G(\alpha_1, \dots, \alpha_i) \times W(\alpha_1, \dots, \alpha_i) | \alpha_{\nu} \in \Omega_{\nu}, i=1, 2, \dots\}$ is an open covering of $X \times Y$ and $G(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$, there is a family $\{F(\alpha_1, \dots, \alpha_i) | \alpha_{\nu} \in \Omega_{\nu}\}$ of closed sets of X such that $\{F(\alpha_1, \dots, \alpha_i) \times W(\alpha_1, \dots, \alpha_i) | \alpha_{\nu} \in \Omega_{\nu}\}$ is a covering of $X \times Y$.

2. The following Theorems 2 and 3 should be compared with [2, Prop. 2.1] and [2, Theorem 4].

Theorem 2. Let X be totally normal and countably paracompact, and let Ω be a well ordered set. We suppose that $\{X_{\alpha} | \alpha \in \Omega\}$ is a family of open sets of X having the following properties: (i) $X_{\alpha} \subset X_{\beta}$ if $\alpha > \beta$, (ii) $\bigcup_{\alpha \in \Omega} X_{\alpha} = X$, (iii) $\bigcap_{\alpha \in \Omega} X_{\alpha} = \phi$, (iv) $\operatorname{Ind}(X_{\alpha} - X_{\alpha+1})$

 $\leq n$, (v) $\{X_{\alpha} - X_{\alpha+1} | \alpha \in \Omega\}$ is locally finite. Then $\text{Ind } X \leq n$.

Before the proof we shall give some notations and two lemmas.

Put $D_{\alpha} = X_{\alpha} - X_{\alpha+1}$. $\{D_{\alpha} | \alpha \in \Omega\}$ is a disjoint family. Then we can define subsets D^{i} $(i=1, 2, \cdots)$ of X as follows. A point x of X belongs to D^{i} if and only if $\{\alpha | V(x) \cap D_{\alpha} \neq \phi, \alpha \in \Omega\}$ consists of at least i elements for any neighborhood V(x) and consists of exactly i elements for some neighborhood V(x). Then we have a disjoint union $X=D^{1} \cup D^{2} \cup \cdots$. Let $D_{\alpha}^{i}=D^{i} \cap D_{\alpha}$. According to (iv) and the subset theorem we have $\operatorname{Ind} D_{\alpha}^{i} \leq n$.

Lemma 2. Ind $D^i \leq n$.

Proof. $D^i = \bigcup_{\alpha \in \mathcal{Q}} D^i_{\alpha}$ is a disjoint union. For any point x of D^i_{τ} $(\gamma \in \mathcal{Q})$ there is some neighborhood $U_{\tau}(x)$ of x such that $\{\alpha \mid U_{\tau}(x) \cap D_{\alpha} \neq \phi, \alpha \in \mathcal{Q}\}$ consists of exactly i elements. Let those elements be $\alpha_1, \alpha_2, \cdots, \alpha_i$. If $\gamma > \alpha_1$, since $D_{\alpha_1} = X_{\alpha_1} - X_{\alpha_1+1}$, we have $D_{\alpha_1} \cap X_{\tau} = \phi$ by (i). Hence $V_{\tau}(x) \cap D_{\alpha_1} = \phi$ } where $U_{\tau}(x) \cap x_{\tau} = V_{\tau}(x)$. This means that $\{\alpha \mid V_{\tau}(x) \cap D_{\alpha} \neq \phi\}$ has at most i-1 elements $\alpha_2, \alpha_3, \cdots, \alpha_i$. This contradicts the assumption that $x \in D^i_{\tau}$. Thus $\alpha_1 \ge \gamma$. In the same way we have $\alpha_2 \ge \gamma, \cdots, \alpha_i \ge \gamma$. Hence we can assume without loss of generality that $\gamma = \alpha_1 < \alpha_2 < \cdots < \alpha_i$.

Take an arbitrary point y of $U_{\tau}(x) \cap D^{i}$. If $y \notin D^{i}_{\tau}, y \in D^{i}_{\alpha_{j}} \subset D_{\alpha_{j}}$ for some $j(1 < j \leq i)$. Then there is some neighborhood V(y) of y such that $V(y) \cap D_r = \phi$. Thus $U_r(x) \cap V(y)$ intersects at most i-1 D_{α} 's. This shows that $y \notin D^i$, which contradicts $y \in U_{\tau}(x) \cap D^i$. Therefore $y \in D^i_{\tau}$. Hence $U_{\tau}(x) \cap D^i \subset D^i_{\tau}$. Thus D^i_{τ} is open in D^i . Since $\{D^i_{\alpha} | \alpha \in \Omega\}$ is a mutually disjoint family, D_T^i is also closed in D^i . Now Ind $D^i \leq n$ follows from [2, Prop. 5.1].

No. 9]

Lemma 3. $\bigcup_{i=1}^{r} D^{i}$ is open in X. Proof. Suppose that $x \in \bigcup_{i=1}^{r} D^{i}$. Then $x \in D^{j}$ for some $j(1 \leq j \leq r)$, and hence there is a neighborhood U(x) of x such that $\{\alpha \mid U(x) \cap D_{\alpha}\}$ $\pm \phi$ has *i* elements. Since U(x) is also a neighborhood of its element y, we have $y \in D^k$ for some $k(k \leq j)$. Then $y \in \bigcup_{i=1}^r D^i$; i.e., $U(x) \subset \bigcup_{i=1}^r D^i$. Thus Lemma 3 is proved.

Proof of Theorem 2. Let $D^1 \cup D^2 \cup \cdots \cup D^k = Z_k$. Suppose that Ind $Z_{k-1} \leq n$. From [2, Prop. 4.7] Z_k is totally normal. Since Z_{k-1} is open in Z_k by Lemma 3, D^k is closed in Z_k . Hence, by [2, Theorem 3], we have Ind $Z_k \leq n$. Since we have clearly Ind $Z_1 = \text{Ind } D^1 \leq n$, by induction on k we can conclude that $\operatorname{Ind} Z_k \leq n$ for any k. Now $Z_1 \subset Z_2 \subset \cdots \subset X$ and $X = \bigcup_{i=1}^{\infty} Z_i$. Since X is countably paracompact and normal, there is a family of closed sets $\{F_i\}$ such that $F_i \subset Z_i$ and $X = \bigcup_{i=1}^{\infty} F_i$. By the subset theorem Ind $F_i \leq n$. Hence we have Ind $X \leq n$ by the sum theorem.

Theorem 3. (The generalized sum theorem.) Suppose that Xis totally normal and countably paracompact. Let Ω be a well ordered set. If $\{A_{\alpha} | \alpha \in \Omega\}$ is a locally finite closed covering of X and if Ind $A_{\alpha} \leq n$ for each $\alpha \in \Omega$, then Ind $X \leq n$.

Proof. We put $X_{\alpha} = X - \bigcup_{\beta < \alpha} A_{\beta}$ and $D_{\alpha} = A_{\alpha} - \bigcup_{\beta < \alpha} A_{\beta}$; then $X_{\alpha} \supset X_{\alpha+1}$ and $\bigcap_{\alpha \in \mathcal{Q}} X_{\alpha} = X - \bigcup_{\alpha \in \mathcal{Q}} A_{\alpha} = \phi$. Since $\{A_{\alpha} | \alpha \in \mathcal{Q}\}$ is locally finite, $\bigcup_{\beta < \alpha} A_{\beta}$ is closed in X. Hence D_{α} is open in A_{α} and X_{α} is open in X. Clearly we have Ind $D_{\alpha} \leq \text{Ind } A_{\alpha} \leq n$. $\{D_{\alpha}\}$ is mutually disjoint. By definition $X_{\alpha} = \bigcup D_{\gamma} = D_{\alpha} \bigcup X_{\alpha+1}. \quad \text{Thus} \quad D_{\alpha} = X_{\alpha} - X_{\alpha+1} \quad \text{and} \quad \text{Ind} \ (X_{\alpha} - X_{\alpha+1}) \leq n.$ Now Theorem 2 is applicable to the present case, and we have Ind $X \leq n$. This proves Theorem 3.

3. Now we are in a position to prove our main theorem.

Theorem 4. If Y is a metric space and if $X \times Y$ is totally normal and countably paracompact, then

 $\operatorname{Ind} (X \times Y) \leq \operatorname{Ind} X + \operatorname{Ind} Y.$ (1)

(Here we assume that at least one of X, Y is not empty.)

Proof. If Ind Y = -1 then (1) is always true. We shall prove

N. KIMURA

the inequality (1) by induction on n=Ind Y. For this purpose, let us assume that (1) is true if $\text{Ind } Y \leq n-1$. Now assume that $\text{Ind } Y \leq n$. We want to show that (1) is true in this case.

Select a countable family $\mathfrak{B}_i = \{V_{i\alpha} | \alpha \in \Omega_i\}$ $(i=1, 2, \cdots)$ of open coverings of Y satisfying the conditions of Lemma 1.

If Ind X=-1 then (1) is trivially true. Assume that (1) is true in case Ind $X \le m-1$, and Ind $Y \le n$; we refer to this as the second induction hypothesis. Suppose that Ind $X \le m$.

Let F be a closed subset of $X \times Y$ and G be an open subset of $X \times Y$ such that $F \subset G$. There exist two open sets L, M of $X \times Y$ such that $F \subset M \subset \overline{M} \subset L \subset \overline{L} \subset G$. We put $N_1 = X \times Y - \overline{M}$, $N_2 = L$. Then $\Re = \{N_1, N_2\}$ is an open covering of $X \times Y$.

We put $G(\alpha_1, \dots, \alpha_i; k) = \text{Int} \{x | x \times W(\alpha_1, \dots, \alpha_i) \subset N_k\}$ (k=1, 2). (Here Int A means the interior of the subset A.) Then $G(\alpha_1, \dots, \alpha_i; k) \times W(\alpha_1, \dots, \alpha_i) \subset N_k$.

Let us put $G'(\alpha_1, \dots, \alpha_i; k) = \bigcup_{j \leq i} G(\alpha_1, \dots, \alpha_j; k)$; then $G'(\alpha_1, \dots, \alpha_i; k)$ $\subset G'(\alpha_1, \dots, \alpha_i, \alpha_{i+1}; k)$ and $G'(\alpha_1, \dots, \alpha_i; k) \times W(\alpha_1, \dots, \alpha_i) \subset N_k$.

Set $G(\alpha_1, \dots, \alpha_i) = G'(\alpha_1, \dots, \alpha_i; 1) \bigcup G'(\alpha_1, \dots, \alpha_i; 2)$; then $G(\alpha_1, \dots, \alpha_i)$ $\subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$. Now

 $(2) \qquad \{G(\alpha_1,\cdots,\alpha_i) \times W(\alpha_1,\cdots,\alpha_i) \mid \alpha_{\nu} \in \Omega_{\nu}, i=1,2,\cdots\}$

is an open covering of $X \times Y$. For, if $(x, y) \in X \times Y$, there is some k(1 or 2) such that $(x, y) \in N_k$. Then there are a neighborhood U(x) of x and elements $\alpha_1, \alpha_2, \dots, \alpha_i$ of Ω such that $U(x) \times W(\alpha_1, \dots, \alpha_i) \subset N_k$ $(y \in W(\alpha_1, \dots, \alpha_i))$. Thus $U(x) \subset G(\alpha_1, \dots, \alpha_i; k)$, and $(x, y) \in G(\alpha_1, \dots, \alpha_i; k) \times W(\alpha_1, \dots, \alpha_i) \subset W(\alpha_1, \dots, \alpha_i) \times W(\alpha_1, \dots, \alpha_i)$. Therefore (2) is an open covering.

Now Theorem 1 is applicable to (2). Hence there exists a family $\{F(\alpha_1, \dots, \alpha_i) | \alpha_\nu \in \Omega_\nu, i=1, 2, \dots\}$ of closed subsets of X such that $F(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$ and such that $\{F(\alpha_1, \dots, \alpha_i) \times W(\alpha_1, \dots, \alpha_i) | \alpha_\nu \in \Omega_\nu, i=1, 2, \dots\}$ is a covering of $X \times Y$. From the relation $F(\alpha_1, \dots, \alpha_i) \subset \bigcup_{k=1}^2 G'(\alpha_1, \dots, \alpha_i; k)$ it follows that there exist closed sets $F(\alpha_1, \dots, \alpha_i; k)$ of X such that $F(\alpha_1, \dots, \alpha_i) = \bigcup_{k=1}^2 F(\alpha_1, \dots, \alpha_i; k)$, $F(\alpha_1, \dots, \alpha_i; k) \subset G'(\alpha_1, \dots, \alpha_i; k)$.

By the assumption that Ind $X \leq m$ there exist open subsets $H(\alpha_1, \dots, \alpha_i; k)$ of X such that Ind $\mathfrak{B}_X(H(\alpha_1, \dots, \alpha_i; k)) \leq m-1$ and $F(\alpha_1, \dots, \alpha_i; k) \subset H(\alpha_1, \dots, \alpha_i; k) \subset G'(\alpha_1, \dots, \alpha_i; k)$.

Since Ind $\mathfrak{B}_{\mathbf{r}}(V_{i\alpha}) \leq n-1$ and $\mathfrak{B}_{\mathbf{r}}(\bigcap_{j=1}^{i} V_{j\alpha_{j}}) \subset \bigcup_{j=1}^{i} \mathfrak{B}_{\mathbf{r}}(V_{j\alpha_{j}})$, we have Ind $\mathfrak{B}_{\mathbf{r}}(W(\alpha_{1}, \dots, \alpha_{i})) \leq n-1$ as a consequence of the sum theorem.

 $\underbrace{\operatorname{Now} \ \mathfrak{B}_{\mathbf{X}\times\mathbf{Y}}(H(\alpha_1,\cdots,\alpha_i;k)\times W(\alpha_1,\cdots,\alpha_i)) = [\mathfrak{B}_{\mathbf{X}}(H(\alpha_1,\cdots,\alpha_i;k))}_{\mathcal{W}(\alpha_1,\cdots,\alpha_i)} \cup [\overline{H(\alpha_1,\cdots,\alpha_i;k})\times \mathfrak{B}_{\mathbf{Y}}(W(\alpha_1,\cdots,\alpha_i))]. \quad \text{According to}$ to the second induction hypothesis $\operatorname{Ind} (\mathfrak{B}_{\mathbf{X}}(H(\alpha_1,\cdots,\alpha_i;k)\times \overline{W(\alpha_1,\cdots,\alpha_i)}))$

 \leq Ind $\mathfrak{B}_x(H(\alpha_1, \dots, \alpha_i; k)) +$ Ind $\overline{W(\alpha_1, \dots, \alpha_i)} \leq (m-1) + n = m + n - 1$. Similarly by the first induction hypothesis

Ind $(\overline{H(\alpha_1, \cdots, \alpha_i; k)} \times \mathfrak{B}_r(W(\alpha_1, \cdots, \alpha_i)) \leq m + (n-1) = m + n - 1$. Applying the sum theorem, we have

(3) Ind $\mathfrak{B}_{X \times Y}(H(\alpha_1, \cdots, \alpha_i; k) \times W(\alpha_1, \cdots, \alpha_i)) \leq m + n - 1 \ (k = 1, 2).$

On the other hand, the family $\{H(\alpha_1, \dots, \alpha_i; k) \times W(\alpha_1, \dots, \alpha_i) | \alpha_{\nu} \in \Omega_{\nu}; i=1, 2, \dots; k=1, 2\}$ is an open covering of $X \times Y$ and is a refinement of \mathfrak{N} .

Let us put $H_i = \bigcup \{H(\alpha_1, \cdots, \alpha_i; 2) \times W(\alpha_1, \cdots, \alpha_i) | \alpha_\nu \in \Omega_\nu\}, K_i = \bigcup \{H(\alpha_1, \cdots, \alpha_i; 1) \times W(\alpha_1, \cdots, \alpha_i) | \alpha_\nu \in \Omega_\nu\}$, and $P_1 = H_1, Q_1 = K_1 - \overline{H_1}, P_i = H_i - \bigcup_{j=1}^{i-1} \overline{K_j}, Q_i = K_i - \bigcup_{j=1}^{i} \overline{H_j} \ (i \ge 2), P = \bigcup_{i=1}^{o} P_i, Q = \bigcup_{i=1}^{o} Q_i$.¹⁾ Then we have

(5)
$$P \cap Q = \phi, \overline{P}_{j} \subset G \ (j=1, 2, \cdots), \ Q \cap \overline{M} = \phi.$$

Finally we put $V=X\times Y-\bar{Q}$. Since $Q\cap M=\phi$ by (5) and M is open, we have $\bar{Q}\cap M=\phi$ and hence $F\subset M\subset V$.

On the other hand, since $V = X \times Y - \bar{Q} \subset X \times Y - \bigcup_{i=1}^{\infty} \bar{Q}_i \subset \bigcup_{i=1}^{\infty} \bar{P}_i \subset G$ by (4) and (5), we have (6) $F \subset V \subset G$. Since $\bar{P}_i = P_i \cup (\bar{P}_i - P_i), \bar{Q}_i = Q_i \cup (\bar{Q}_i - Q_i)$, we have from (4) (7) $X \times Y = P \cup Q \cup (\bigcup_{i=1}^{\infty} (\bar{P}_i - P_i)) \cup (\bigcup_{i=1}^{\infty} (\bar{Q}_i - Q_i))$. From (5) and the openness of P it follows that $P \cap \bar{Q} = \phi$. Hence $P \cap (\bar{Q} - Q) = \phi$. Therefore we have by (7)

(8)
$$\overline{Q} - Q \subset \bigcup_{i=1}^{\omega} (\overline{P}_i - P_i) \bigcup (\bigcup_{i=1}^{\omega} (\overline{Q}_i - Q_i)).$$

Since $\{W(\alpha_1, \cdots, \alpha_i) | \alpha_i \in Q_i\}$ is locally finite, we have

$$\begin{split} & \overline{H}_i - H_i \subset \bigcup_{\mathfrak{a}} \{ \mathfrak{B}_{X \times Y}(H(\alpha_1, \cdots, \alpha_i; 2) \times W(\alpha_1, \cdots, \alpha_i)) | \alpha_{\nu} \in \Omega_{\nu} \}, \\ & \overline{K}_i - K_i \subset \bigcup_{\mathfrak{a}} \{ \mathfrak{B}_{X \times Y}(H(\alpha_1, \cdots, \alpha_i; 1) \times W(\alpha_1, \cdots, \alpha_i)) | \alpha_{\nu} \in \Omega_{\nu} \}. \end{split}$$

Since $\{\mathfrak{B}_{X\times Y}(H(\alpha_1,\dots,\alpha_i;k)\times W(\alpha_1,\dots,\alpha_i))|\alpha_{\nu}\in \mathcal{Q}_{\nu}\}$ is a locally finite family of closed sets, from (3) and Theorem 3, if follows that Ind $(\bigcup \{\mathfrak{B}_{X\times Y}(H(\alpha_1,\dots,\alpha_i;k)\times W(\alpha_1,\dots,\alpha_i))|\alpha_{\nu}\in \mathcal{Q}_{\nu}\}) \leq m+n-1.$

Hence $\operatorname{Ind}^{\alpha}(\overline{H_i}-H_i) \leq m+n-1$, $\operatorname{Ind}(\overline{K_i}-K_i) \leq m+n-1$. Since $X \times Y$ is totally normal, we have, by the sum theorem,

Ind $(\overline{P}_i - P_i) \leq m + n - 1$, Ind $(\overline{Q}_i - Q_i) \leq m + n - 1$.

By applying the sum theorem again we have from (8) Ind $(\bar{Q}-Q) \leq m+n-1$, Hence

(9)
$$\operatorname{Ind}(\overline{V}-V) \leq m+n-1.$$

No. 9]

¹⁾ The argument below is the same as that in [3, Lemma 2.2].

The relation (9) together with (6) shows that $\operatorname{Ind} (X \times Y) \leq m+n$. Thus (1) holds for X with $\operatorname{Ind} X \leq m$. Therefore the inequality (1) for any X and for any Y with $\operatorname{Ind} Y \leq n$ is proved under the first induction hypothesis. Consequently, the proof of Theorem 4 is completed.

4. K. Morita [4] proved that if X is perfectly normal and Y is metrizable then $X \times Y$ is perfectly normal. Since any perfectly normal space is totally normal and countably paracompact, the following theorem follows directly from Theorem 4.

Theorem 5. If X is a perfectly normal space and Y is a metrizable space then $\operatorname{Ind} (X \times Y) \leq \operatorname{Ind} X + \operatorname{Ind} Y$.

References

- E. Čech: Sur la dimension des espaces parfaitement normaux, Bull. int. Acad. Praque, 33, 38-55 (1932).
- [2] C. H. Dowker: Inductive dimension of completely normal spaces, Quart. Jour. Math., 4, 267-281 (1953).
- [3] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350-362 (1954).
- [4] —: On the product of a normal space with a metric space, Proc. Japan Acad., 39, 148-150 (1963).
- [5] ——: Products of normal spaces with metric spaces II, to appear.
- [6] K. Nagami: On the dimension of product spaces, Proc. Japan Acad., 36, 560-563 (1960).