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(Comm. by Kinjird6 KUNUGI, M.J.A., Nov. 12, 1963)

As is well known, the large inductive dimension of a topological
space X, denoted by Ind X, is defined as follows. In case X=¢, we
put Ind X=—1, and define Ind X<n for n=0 inductively by the
requirement that for any pair of a closed set F' and an open set G

with FCG there exists an open set U such that FCUCG, Ind (TU—U)
<n—1. Ind X=m means that we have Ind X=» but not Ind X<n—1.

E. Cech [1] proved that the subset theorem and the sum theorem
hold for the large inductive dimension of perfectly normal spaces.

C. H. Dowker [2] generalized Cech’s results mentioned above by
proving that the subset theorem and the sum theorem hold still for
the large inductive dimension of totally normal spaces. Here a normal
space X is said to be totally normal (Dowker [2]) if each open sub-
space of X has a locally finite open covering by open subsets each
of which is an F, set of X. Since every perfectly normal space is

totally normal ([2]) Cech’s results are included in Dowker’s results.

As for the large inductive dimension of product spaces, in 1960

K. Nagami [6] proved the validity of the inequality

Ind (XX Y)<Ind X+Ind Y
for the case where X is a perfectly normal, paracompact space and
Y is a metrizable space. This seems to be the most general result
known hitherto.

In the present note we shall establish that the above inequality
holds still for the case where XX Y is a countably paracompact,
totally normal space and Y is a metrizable space; this is stated as
Theorem 4 below. If X is a perfectly normal space and Y a metriz-
able space, then XX Y is also perfectly normal as was proved in
Morita [4] and hence XX Y is totally normal and countably para-
compact. Thus Nagami’s result is contained in our Theorem 4.

Our proof of Theorem 4 is based on two theorems; one is a
theorem of K. Morita [5] on product spaces and the other is a gene-
ralized sum theorem which will be proved below as Theorem 3.

Our Theorem 3, which seems to be of some interest in itself,
asserts that if {4,} is a locally finite closed covering of a countably

paracompact, totally normal space X and if Ind A.<n for each « then
Ind X<,
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1. We can easily prove the following

Lemma 1. Let Y be a metric space with Ind Y<n. Then there
is a countable family {8;|1=1,2,---} of locally finite open coverings
B,={Vilac2} of Y such that Ind By(V,,)<n—1, and the diameter
of V. is smaller than 27" for acf,. Here By(V,,) means the bound-
ary of V,..

Let us put

W(ab' ) ai)=V1a,ﬂ e n Via,;;
then the following theorem can be proved without the dimensional
condition.

Theorem 1. ([5, Theorem 2.3]). XX Y ts countably paracompact
and normal if and only if (i) X is countably paracompact and normal,
and (ii) for any family {G(ay,- -+, a;)|a,eQ,,1=1,2,---} of open sets
of X such that {G(ay,: -, a)) X W(ay, -, a)|a,e2,,1=1,2,--:} is an
open covering of XXY and G(ay,- -, ) G(ay,- -+, a; a;,1), there is a
Jamily {F(ay,---, a)|a,€0,} of closed sets of X such that {F(ay,---, a;)
X W(ay,- -+, a)|a,e0,,1=1,2,---} is a covering of XXY.

2. The following Theorems 2 and 3 should be compared with
[2, Prop. 217 and [2, Theorem 4].

Theorem 2. Let X be totally normal and countably paracompact,
and let Q be a well ordered set. We suppose that {X.|acQ} is a
family of open sets of X having the following properties:

(i) X.C X, of a>B, (i) LGJQXO,:X, (iii) OgXa=¢, (iv) Ind(X,— X, 1)
=n, ) {Xo—X.|ac@} ts locally finite. Then Ind X=n.

Before the proof we shall give some notations and two lemmas.

Put D,=X,—X,,..{D.|acQ} is a disjoint family. Then we can
define subsets D' (i=1,2,---) of X as follows. A point x of X
belongs to D? if and only if {a| V(2) D.>¢, a<Q} consists of at least
1 elements for any neighborhood V(x) and consists of exactly <
elements for some neighborhood V(x). Then we have a disjoint union
X=D'UD?*J--+-. Let Di=D'ND,. According to (iv) and the subset
theorem we have Ind Di<n.

Lemma 2. Ind D'<Zn.

Proof. D'=|J D! is a disjoint union. For any point z of D:

a€Q

(ref) there is some neighborhood U,.(x) of x such that {a|U,(x)ND.
¢, ac} consists of exactly ¢ elements. Let those elements be
ay, ag,* -+, a; If y>a,, since D, =X, —X,, ., we have D, NX,=¢ by
(1). Hence V. (x)N D, =¢} where U,(x)x,=V,(x). This means that
{a| V(x)ND.%x¢} has at most 1—1 elements as, a3, -+, a;. This con-
tradicts the assumption that xeD:. Thus a;=7. In the same way
we have a,=7,---,a,=7. Hence we can assume without loss of gen-
erality that r=a,<a,<-:-<a,.
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Take an arbitrary point y of U, (x)ND'. If ye¢Di, yeD: jCDa ;
for some j(1<j<1%). Then there is some neighborhood V(y) of % such
that V(y)ND,=¢. Thus U (x)V(y) intersects at most i—1 D,s.
This shows that y¢D? which contradicts ye U,(x)(\D’. Therefore
yeDi. Hence U,(x)ND‘CDi. Thus D: is open in D'. Since {D:|a e}
is a mutually disjoint family, D% is also closed in D'. Now Ind D'<n
follows from [2, Prop 5.17.

Lemma 3. UDl 18 open 1n X.
Proof. Suppose that x¢ UD’ Then xzeD’ for some j1<j<7),

and hence there is a nelghborhood U(x) of = such that {«|U(x)N D,
¢} has ¢ elements. Since U(z) is also a neighborhood of its element
Yy, we have yeD* for some k(k<j). Then ye U D% ie., Ulx)C LTJD".
i=1 i=1

Thus Lemma 3 is proved.

Proof of Theorem 2. Let D*JD*{.--UD*=Z, Suppose that
Ind Z,_,<n. From [2, Prop. 4.7] Z, is totally normal. Since Z,_, is
open in Z, by Lemma 8, D* is closed in Z,. Hence, by [2, Theorem
3], we have Ind Z,<n. Since we have clearly Ind Z,=Ind D'<n, by
induction on k¥ we can conclude that Ind Z,<n for any k. Now

Z,CZ,C---CX and X= UZ Since X is countably paracompact

and normal, there is a famlly of closed sets {F';} such that F,CZ,

and X= UFi. By the subset theorem Ind F;<mn. Hence we have
=1

Ind X<n by the sum theorem.

Theorem 3. (The generalized sum theorem.) Suppose that X
1s totally mormal and countably paracompact. Let Q be a well
ordered set. If {A.|lacQ} is a locally finite closed covering of X and
of Ind A.Zn for each acf, then Ind X <n.

Proof. We put X,=X— UA,g and D,=A,— UAﬂ, then X,DX,,,

and NX.,=X— U A.=¢. Slnce {A |} is locally finite, UA is

a€ aeQ

closed in X. Hence D, is open in A, and X, is open in X. Clearly
we have Ind D,.<Ind A,=Zn. {D,} is mutually disjoint. By definition
X.=UD,=D,U X.s;. Thus D,=X,—X,,; and Ind (X,—X,,,)<n.
Nowrg’i‘heorem 2 is applicable to the present case, and we have
Ind X<n. This proves Theorem 3.
3. Now we are in a position to prove our main theorem.
Theorem 4. If Y 1s a metric space and if XXY s totally
normal and countably paracompact, then
(1) Ind (XX Y)<Ind X+1Ind Y.
(Here we assume that at least one of X, Y is mot empty.)
Proof. If Ind Y=—1 then (1) is always true. We shall prove
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the inequality (1) by induction on n=Ind Y. For this purpose, let
us assume that (1) is true if Ind Y<n—1. Now assume that Ind Y<n.
We want to show that (1) is true in this case.

Select a countable family B,={V,|aec®;} (1=1,2,---) of open
coverings of Y satisfying the conditions of Lemma 1.

If Ind X=—1 then (1) is trivially true. Assume that (1) is true
in case Ind X<m—1, and Ind Y<n; we refer to this as the second
induction hypothesis. Suppose that Ind X<m.

Let F be a closed subset of XXY and G be an open subset of
XXY such that FCG. There exist two open sets L, M of XXY
such that FCMcMcLCLcG. We put N,=XxY—M, N,=L.
Then N={N,, N,} is an open covering of XX Y.

We put G(ay,: -+, a; k)=Int {x| e X W(ay,- -, a,))CN,} (=1, 2).
(Here Int A means the interior of the subset A.) Then G(ay,:-:, a; k)
X W(al, ] ai)CNlc-

Let us put G'(ay,- -+, a5 k)= ,-LéJiG(al" -, a; k); then G'(ay,- -+, a; k)

CGI(aly’ Cry Qg Mgy k) and Gl(alf Ty Ay k)x W(alx Yy ai)Cva

Set G(ay,- -+, a)=G"(ay, -+, a3 UG (g, -+, a 2); then G(ay,- -+, a;)
CG(ay- -+ @y a;,1). Now
(2) {Glay, -+, a) X W(ay,- -, o)) |a,eQ,, 1=1,2,- ..}
is an open covering of XX Y. For, if (x, y)e XX Y, there is some
k(1 or 2) such that (¢, ¥)eN,. Then there are a neighborhood U(x)
of x and elements ay, ay,- + +, a; of 2 such that U(x) X W(ay,: -, a;) TN,
(yeW(ay,--+,a;). Thus Ulx)CG(ay,- -, a;k), and (x, y)eG(ay,- - - a; k)
X Way, -+, a;)TG(ay, - -+, a) X W(ay,- -+, a;). Therefore (2) is an open
covering.

Now Theorem 1 is applicable to (2). Hence there exists a family
{F(ay,- -+, a)|a,e2,, 1=1,2,---} of closed subsets of X such that
F(ay,- -+, a)CG(ay,- -+, a;) and such that {F(ay,---, a;)) X W(ay,- -, a;)
|a,eQ,, ©=1,2,---} is a covering of XXY. From the relation
Flay,- -, “i)c,c@lG,(““ -, a; k) it follows ‘chat2 there exist closed sets
F(ay,- -+, a; k) of X such that F(ay, -, a)= kLJIF(al,- - ag k),

F(ay,- -, a; k)CTG(ay,- -+, as; k).

By the assumption that Ind X<m there exist open subsets
H(ay, -+, a3 k) of X such that Ind Bx(H(ay,: -, a;k)<m—1 and
F(aly' cy Ay k)cH(al’ Crra Ay k)CG/(al’ T, Ay k)'

Since Ind By(V,)<n—1 and fzsy(jr_ﬁl Vjaj)ch_Jl B(V,), We have
Ind Bx(W(ay,- -+, a;))=n—1 as a consequence of the sum theorem.

Now Bxryr(H(ay,: -, ay k)X W(ay,: -, a))=[Bx(H(ay,- -, a; k))
XW(ay, -+, a)]JULH(ay, .+, a; ) XBe(W(ay,: -+, a;))]. According to
the second induction hypothesis Ind (Bx(H(ay,: -, a; k) X W(ay,: -, a;))
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<Ind Bx(H(ay,-*+, a; k))+Ind W(ay,:+,a)=(m—1)+n=m+n—1.
Similarly by the first induction hypothesis
Ind (H(ay," -+, a5 ) XBr(W(ay,- -+, a)) Sm+(n—1)=m+n—1.
Applying the sum theorem, we have
(3) Ind By r(H(ay, -+, a5 )X W(ay, -+, a))Sm+n—1 (k=1, 2).
On the other hand, the family {H(ay,---, a; k)X W(ay,: -, a;)
|a,eQ,; 1=1,2,--+; k=1,2} is an open covering of XXY and is a
refinement of N.
Let us put H,=U{H(ay-*+, a5 2)X W(ay,- -+, a;)|a, € 2.}, K,;=U{H
(an : )au 1) X W(an s a)|e,e,}), and Pl—Hn Q1—K1”‘E1: P,=H,
U » Qi=K,— UH (t=2), P= UP@, Q= UQ v
Then we have

(4) XxY=(UP)U(UJ @),

(5) PNQ=¢, P,CG (j=1,2,--+), QN M=¢.
Finally we put V=XXY—Q. Since QN M=¢ by (5) and M is
open, we have QN M=¢ and hence FCMCV.
On the other hand, since V=XXY—-QCXXY
by (4) and (5), we have
(6) FCVCG.
Since P,=P,J(P,—P,), },=Q,U(Q,—Q,), we have from (4)
(7) Xx Y=PUQU(U (P.— P)U(U@:—Q)).
From (5) and the openness of P it follows that PNQ=¢. Hence
PN(Q—Q)=¢. Therefore we have by (7)

QFG

I|C3
IICg

(8) Q- U @—PIUU @i—Q).
Since {W(ay,- -, a;)|a,€0,} is locally finite, we have

ﬁi—HiCU{%XxY(H(aly’ cey Ay Z)X W(au' ) a’,;))la'uG.Q,,},
I—{i_KiC U{Bxxr(H(ay,- -, a; DX W(ay,- -, ai))la,e.Q,,}.

Since {Bxyr(H(ay, -+, a5 k)X W(ay,: -+, a;))|a,€2,} is a locally
finite family of closed sets, from (3) and Theorem 3, if follows that
Ind (U {%XXY(H<0(1’ cey, Ky k) X IV(C(I, s, al)) | a,e.Qv})é’m—}-’n—l.

Hence Ind (H,—H)<m+n—1, Ind (K,—K)<m+n—1. Since XXY
is totally normal, we have, by the sum theorem,

Ind (P,—P)sm+n—1, Ind (@,—Q)<m+n—1.

By applying the sum theorem again we have from (8) Ind (Q—@Q)
<m-+n—1, Hence

(9) Ind (V-V)<m+n—1.

1) The argument below is the same as that in [3, Lemma 2.2].
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The relation (9) together with (6) shows that Ind (XX Y)=m+n.
Thus (1) holds for X with Ind X<m. Therefore the inequality (1)
for any X and for any Y with Ind Y<# is proved under the first
induction hypothesis. Consequently, the proof of Theorem 4 is com-
pleted.

4. K. Morita [4] proved that if X is perfectly normal and Y
is metrizable then XX Y is perfectly normal. Since any perfectly
normal space is totally normal and countably paracompact, the follow-
ing theorem follows directly from Theorem 4.

Theorem 5. If X is a perfectly mormal space and Y is a met-
rizable space then Ind (XX Y)<Ind X+Ind Y.
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