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143. On the Inductive Dimension o Product Spaces
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Hokkaido Gakugei University

(Comm. by Kinjir6 KUNUGI, M.J.A., Nov. 12, 1963)

As is well known, the large inductive dimension of a topological
space X, denoted by Ind X, is defined as follows. In case X--, we
put Ind X----l, and define Ind X<=n for n>__0 inductively by the
requirement that for any pair of a closed set F and an open set G
with FcG there exists an open set U such that FUG, Ind (U--U)
_< n--1. Ind X--n means that we have Ind X<_ n but not Ind X<_ n--1.

E. Cech 1_ proved that the subset theorem and the sum theorem
hold for the large inductive dimension of perfectly normal spaces.

C. H. Dowker 2 generalized Cech’s results mentioned above by
proving that the subset theorem and the sum theorem hold still for
the large inductive dimension of totally normal spaces. Here a normal
space X is said to be totally normal (Dowker 2) if each open sub-
space of X has a locally finite open covering by open subsets each
of which is an F, set of X. Since every perfectly normal space is

totally normal (2) Cech’s results are included in Dowker’s results.
As for the large inductive dimension of product spaces, in 1960

K. Nagami 6 proved the validity of the inequality

Ind (Xx Y)G Ind X+Ind Y
for the ease where X is a perfectly normal, paraeompaet space and
Y is a metrizable space. This seems to be the most general result
known hitherto.

In the present note we shall establish that the above inequality
holds still for the ease where X Y is a eountably paraeompaet,
totally normal space and Y is a metrizable space; this is stated as
Theorem 4 below. If X is a perfectly normal space and Y a metriz-
able space, then X Y is also perfectly normal as was proved in
Morita 4 and hence XX Y is totally normal and eountably para-
eompaet. Thus Nagami’s result is contained in our Theorem 4.

Our proof of Theorem 4 is based on two theorems; one is a
theorem of K. Morita 5 on procluet spaces and the other is a gene-
ralized sum theorem which will be proved below as Theorem 3.

Our Theorem 3, whieh seems to be of some interest in itself,
asserts that if {A} is a locally finite closed eovering of a eountably
paracompact, totally normal space X and if Ind A__< n for each then
Ind X_<_ n.
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1. We can easily prove the following
Lemma 1. Let Y be a metric space with Ind Y<=n. Then there

is a countable family [e li--1, 2,. .} of locally finite open coverings

e--{VlaetO} of Y such that Ind (V)=<n--1, and the diameter

of Ve is smaller than 2 -e for a et?i. Here r(V) means the bound-
ary of V.

Let us put
w(,. ., )- v, f3... f3 v;

then the following theorem can be proved without the dimensional
condition.

Theorem 1. (5, Theorem 2.3). X Y is countably paracompact
and normal if and only if (i) X is countably paracompact and normal,
and (ii) for any family {G(a,. ., ae) l2, i-l, 2,...} of open sets

of X such that [G(a,..., a) W(a,..., ae)]aetg, i-l, 2,...} is an

open covering of X Y and G(a,. ., ai)G(a,. ., ae, ae/), there is a
family {F(a,..., ae)]a tg} of closed sets of X such that {F(a,...,

W(a,..., )1[2, i--l, 2,...} is a covering of X Y.
2. The following Theorems 2 and 3 should be compared with

[2, Prop. 2.1J and 2, Theorem 4.
Theorem 2. Let X be totally normal and countably paracompact,

and let t? be a well ordered set. We suppose that {X. laet? is a
family of open sets of X having the following properties:

X.X/.f a >, (ii) [J X.- X, (iii) X.-, (iv) Ind (X.-- X.+i)

=< n, (v) {X,--X,+ a e 12] is locally finite. Then IndXn.
Before the proof we shall give some notations and two lemmas.
Put D,=X,--Xo+. {D. a e 12} is a disjoint family. Then we can

define subsets D (i--1,2,...) of X as follows. A point x of X
belongs to D if and only if {a[ V(x) D, 4: 0, a e 2} consists of at least
i elements for any neighborhood V(x) and consists of exactly i
elements for some neighborhood V(x). Then we have a disjoint union
X--D JD(_j.- .. Let D--D D,. According to (iv) and the subset
theorem we have Ind

L,emma 2. Ind De_< n.
Proof. De--JD. is a disjoint union. For any point x of D*

(y e 12) there is some neighborhood Ur(x) of x such that [a] Ur(x) D.
4:,aet2} consists of exactly i elements. Let those elements be
a,a,...,a. If y>a, since D.--X.,--X.,+, we have D.,X-- by
(i). Hence V(x) D.,-- 0} where U(x) f x-- Vr(x). This means that
{a Vr(x) D#} has at most i--1 elements a, a,..., a. This con-
tradicts the assumption that xeD. Thus a’. In the same way
we have a.>= y,. ., a,>__-. Hence we can assume without loss of gen-
erality that y-- a,<a
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Take an arbitrary point y of Ur(x)Di. If y6D,
for some j(1 3"__<i). Then there is some neighborhood V(y) of y such
that V(y) Dr--. Thus Ur(x) V(y) intersects at most i-- 1 D,’s.
This shows that y6D, which contradicts ye U(x) D. Therefore
yeD. Hence Ur(x),DicD. Thus D is open in D. Since
is a mutually disjoint family, D is also closed in D. Now Ind
follows from [2, Prop. 5.1.

Lemma 3o 5 Di is open in X.

Proof. Suppose that xe JD. Then xeD for some

and hence there is a neighborhood U(x) of x such that {al U(x)D
#} has i elements. Since U(x) is also a neighborhood of its element

y, we have yD for some k(k<=j). Then ye J Di; i.e., U(x) D.
Thus Lemma 3 is proved.

Proof of Theorem 2. Let D [J D J.. [_J D=Z. Suppose that
IndZ___<n. From [2, Prop. 4.7 Z is totally normal. Since Z_ is
open in Z by Lemma 3, D is closed in Z. Hence, by [2, Theorem
3], we have Ind Z<__n. Since we have clearly Ind Z--IndD<=n, by
induction on k we can conclude that IndZn for any k. Now

ZIZ....cX and X-[JZ. Since X is countably paracompact

and normal, there is a family of closed sets {F} such that FZ
and X= [JF. By the subset theorem IndF<=n. Hence we have

Ind X<= n by the sum theorem.
Theorem 3. (The generalized sum theorem.) Suppose that X

is totally normal and countably paracompact. Let [2 be a well
ordered set. If {A. a e 2} is a locally finite closed covering of X and
if Ind A. <= n for each a 2, then Ind X=< n.

Proof. We put X.-X-- [J A and D.--A-- [J A; then X.X.+I
and X-X-- [_J A,-- . Since {A, [a e/2} is locally finite, [_J A is

closed in X. Hence D is open in A and X is open in X. Clearly
we have Ind D<=Ind A<=n. {D} is mutually disjoint. By definition
X- J D--D J X+. Thus D--X,--X+ and Ind (X--X+)<=n.
Now Theorem 2 is applicable to the present case, and we have
Ind X<=n. This proves Theorem 3.

3 Now we are in a position to prove our main theorem.
Theorem 4. If Y is a metric space and if X Y is totally

normal and countably paracompact, then

( 1 Ind (X Y)=<Ind X+Ind Y.
(Here we assume that at least one of X, Y is not empty.)
Proof. If Ind Y----1 then (1) is always true. We shall prove
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the inequality (1) by induction on n-Ind Y. For this purpose, let
us assume that (1) is true if Ind Y=<n--1. Now assume that Ind Y__<n.
We want to show that (1) is true in this case.

Select a countable family -{Vlae/2} (i--l, 2,...) of open
coverings of Y satisfying the conditions of Lemma 1.

If Ind X----1 then (1) is trivially true. Assume that (1)is true
in case Ind X<=m--1, and Ind Y<=n; we refer to this as the second
induction hypothesis. Suppose that Ind X<=m.

Let F be a closed subset of X Y and G be an open subset of
XY such that FG. There exist two open sets L, M of X Y
such that FMMLLG. We put N--XY--M, N--L.
Then --{N,, N} is an open covering of X Y.

We put G(,..., ; k)-Int [x[x W(a,..., )N} (k--l, 2).
(Here Int A means the interior of the subset A.) Then G(a,..., a; k)
W(,..., )N.
Let us put G’(a,..., a; k)-- U G(a,..., a; k); then

G’(a,. ., a, a/; k) and G’(a,..., a; k) W(a,..., a)N.
Set G(a,..., a)-G’(a,..., a; 1)LJG’(a,..., a; 2); then G(a,..., a)

G(,..., , +). Now
( 2 {G(a,..., a,) W(a,,..., a)[ a e/2, i-1, 2,...
is an open covering of X Y. For, if (x, y)eX Y, there is some
k(1 or 2) such that (x, y)eN. Then there are a neighborhood U(x)
of x and elements a,, a,..-, a of/2 such that U(x) W(a,...,
(y W(a,..., a)). Thus U(x)G(a,. ., a; k), and (x, y)G(a,. a; k)

W(a,..., a)G(a,_,..., a) W(a,..., a). Therefore (2) is an open
covering.

Now Theorem 1 is applicable to (2). Hence there exists a family
{F(a,..., a)lae/2, i--l, 2,...} of closed subsets of X such that
F(a,..., a)cG(a,..., a) and such that {F(a,...,
aetg, i--1,2,...} is a covering of XY. From the relation

F(a,,..., a) U G’(a,. ., a; k) it follows that there exist closed sets
k=l

F(a,..., a; k) of X such that F(a,,..., a)-- U F(a,..., a; k),
k=l

F(,. ., ; )’(,,. ., : ).
By the assumption that IndX__<m there exist open subsets

H(a,...,a;k) of X such that Indx(H(a,...,a; k))=<m--1 and
F(a,. ., a; k)H(a,. ., a; k)a’(a,. ., a; k).

Since Ind 3r(V)gn--1 and 3r(r v.)U3r(v,), we have
= =

Ind 3r(W(a,...,a))_<_n--1 as a consequence of the sum theorem.
Now 3r(H(a,..., ; k)X W(a,..., a))-Ex(g(a,..., a; k))

X W(a,..., a) U EH(a,..., {; k) x r(W(a,’’ ", a)). According to
the second induction hypothesis Ind (x(H(a,..., a;
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Ind x(.H(al," ", a; k))+Ind W(a,. .,a)G(m-1)+n-m-b-n-1.
Similarly by the first induction hypothesis

Ind (H(al," ", a; ]c) 3r(W(al,’’ ", a))<=m+(n--1)-m-b-n--1.
Applying the sum theorem, we have
3 Ind xr(H(a,..., a; k) W(a,..., a))m+n--1 (k-l, 2).

On the other hand, the family {H(a,..., a; k) W(a,..., a)
aeg; i-1,2,...; k-l, 2} is an open covering of XY and is a

refinement of .
Let us put H-- [H(a,. ., a; 2) W(a,. ., a) a 9}, K-- [H

(a,...,a;1)xW(a,...,a)]a, eg,}, and P--H,Q--K--H, P--H
U ,G-- U. (), = U , @- U G.= = = =

Then we have

4 XX Y=(U P) U (U Q),

(5) PQ-, P;G (j-l, 2,...), QM=.
Finally we put V=Xx Y-Q. Since QM= by (5) and M is

open, we have QM= and hence FcMcV.
0n the other hand, since V=Xx Y-QcXx Y- U Q,c U P,c G

t=l i=l

by (4) and (5), we have
( 6 Fc
Since P-- P, U (P,- P,), Q,-Q, U (Q,-Q,), we have from (4)

( 7 ) Xx Y=PUQU U (P,- P,)) U U (Q,-Q,)).
=1 =1

From (5) and the openness of P it follows that PQ-. Hence
P(Q-Q)-. Therefore we have by (7)

( 8 Q-QU (P,- P,) U U (Q-Q,)).
=1 =1

Since {W(a,..., a,)laeg} is locally finite, we have

H-Hc U{(H(,..., ; 2) x W(,..., )) 9},

K--KcU[(H(,..., ; )x W(,..., ,)) 9}.
Since {xxr(H(a," ", a,; k) x W(a,..., a,))laeg} is a locally

finite family of closed sets, from (3) and Theorem 3, if follows that
Ind (U {gxxr(H(a,’’ ", a,; k)X W(a,..., a,)) a9})Gm+n--1.

Hence Ind (H,--H,)m+n--1, Ind (K,--K,)m+n--1. Since XX Y
is totally normal, we have, by the sum theorem,

Ind (P,--P,)m+n--1, Ind (Q,-Q)Gm+n-1.
By applying the sum theorem again we have from (8) Ind (Q-Q)

m+n- 1, Hence
( 9 Ind (V--V)Gm+n-1.

1) The argument below is the same as that in 3, Lemma 2.2].
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The relation (9) together with (6) shows that Ind (X Y)<=m+n.
Thus (1) holds for X with Ind X<=m. Therefore the inequality (1)
for any X and for any Y vith Ind Y<=n is proved under the first
induction hypothesis. Consequently, the proof of Theorem 4 is com-
pleted.

4. K. Morita [4J proved that if X is perfectly normal and Y
is metrizable then X Y is perfectly normal. Since any perfectly
normal space is totally normal and countably paracompact, the follow-
ing theorem follows directly from Theorem 4.

Theorem 5o If X is a perfectly normal space and Y is a met-
rizable space then Ind (X Y) <__ Ind X+Ind Y.
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