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Let E, F be linear spaces, a a bilinear form on EXF. A pair
of E, F is called a dual system on « if

1) a(x, y)=0 for all xe¢E implies y=0,

2) a(x, y)=0 for all yeF implies x=0.

Let E, F be a dual system on «, and let G, H be a dual system
on B. If u is a linear map from E to G, then B(u(x), ¥') is bilinear
on GX H, where ' ¢H. Put a(z, u*(y))=p4u(x), y’) for all xcE and
y' eH, if u* is defined, it is a map from H to F. wu* is called the
algebraic adjoint map of u. If B is of finite dimension, u* is always
well defined. In a Hilbert space with many inner products, we can
define the adjoint on these inner products of a continuous linear map.
The other example is the usual adjoint map. Let A be a subset of
E (or F), the orthogonal part AL is defined by the set {y]|a(z, y)=0
for all zeA} (or {z|a(x, ¥)=0 for all yeA). Similarly we can also
consider the orthogonal part for G, H, and p.

We shall consider a system in which the adjoint map is well
defined.

Then we have the following fundamental

Proposition 1. For a linear subspace A of E,

w* (AL =(u(4))*.

Proposition 2. For a linear subspace B of G,

(w Y(B))*=u*(B*).

Proof of Proposition 1. Let % eu*-!(A'), then for all z¢A,
0=a(x, u*(y))=p(u(), ¥') and so y' eu(A)*. Conversely if ¥ e(u(4))*,
then 0=_p(u(x), ¥')=a(x, u*(y’)) for all xeA. Hence u*(y')CAL, and
Yy eu* 1(AL).

Proof of Proposition 2. Let ycu*(B*'), there is an element y'¢ B+
such that u(y)=y. For any xzecu (B), we have a(z, ¥)=a(x, u*¥))
=B(u(x), y')=0. Hence ye(u '(B))*.

To prove the converse, we shall consider some linear subspaces.
From wu !'(B)Dker(u), there is the linear subspace E;, such that
u Y(B)=ker (w)®E,, Hence BCu(K,). Further there is the linear
subspace E, such that E=ker (u)®@ E,®FE, Let % be the restriction
of w on E,®E, then u gives an isomorphism from E, ® E, to Im(u).
If G=u(E,), G,=u(E,), then BCG,. Let p be the projection from
G to G,.
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For ye(u '(B))*, we define ¥’ by
B, y)=a(@i(p(x), y) for a'eG.

If 2’ G, DG, then B/, y')=a(u '(2'), y). Hence a(z, y)=p(u(x), ¥')
=a(z, w*(y")) for all xcE. Therefore we have y=u*(y). Then for
2’ €@,

B, y)=a(@ (p(), w*(¥))
= Bu(@(p(x"))), ¥') = B(p(x"), ¥).

This shows B(xf, ¥)=0 for x;¢G,. For each 2'¢ B, we have
¥ =wx|+x;, x1€Gy, x5eG,. Let u(x,)=2x), then

0=a(z, y)=alx, u*(¥))
=p(u(@), ¥')=B(1, ¥).
Therefore we have
B, y')= B(xi+ =5, y") = B(x1, y')+ Bz, ¥')=0.

This shows y=u*(y’), ¥’ ¢B*, which is equivalent to yeu*(B*).

CorOLLARY. Ker(u*)=(Im(u))*, Im(u*)=(Ker(u))*.

Proposition 3. Im(u)=G if and only if w*' exists.

Proof. By Corollary Ker(u*)=(Im(u))*=(0) if and only if Im(u)
=G. This is equivalent to the existence of the inverse of u*.

Proposition 4. Im(u*)=F if and only if u™' exists.

Proof. wu! exists, if and only if Ker(u)=0. Hence by Corollary,
this means Im(u*)=F.

If Ker(w) is of finite dimension, u is called an a-map, on the
other hand, if Im(u) is of finite co-dimension, u is called a S-map.
(See A. Deprit [17].) Then, by Corollary,

Proposition 5. Let # be a linear map from E to F. wu is an
a-map (or B-map) if and only if u* is a S-map (or an a-map).

In this case, we have dim(ker(w))=cod(Im(u*)) or cod(Im(u))
=dim(ker(u*)).
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