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1. A series -,a with partial sums Sn is summable to sum s by
the NSrlund method (N, p) if

(1.1) t- 1 _,p_ ,
=0

as - oo, where P-p and p>O [2. he series

be absolutely summable (N, ), or summable N, I, if the sequence
{t} is of bounded variation [4. he conditions for the regularity
of the summability (N, ) defined by (1.1) are

(1.2) lim p/P-O, and P --O(Pn).

In the seeial ease in which

(n+--l)_ (n+)(0),

the NSrlund mean reduces to the familiar Cesro mean of order
[2. And for the value for which

1
Pn-- PnlOg n,

n+l
the NSrlund mean reduces to the harmonic mean

Let f(t) be a periodic function with period 2z and integrable (L)
over (--z, ). Without any loss of generality, we may assume that
the constant term in the Fourier series of f(t) is zero, that is,

j f(t)dt-O,

and

f(t) (a cos nt -+-b sin nt) ff An(t).
=I ----I

We use the following notations:--

(t) --l/.f(x--t)+f(x--t)--2f(x)}
(t)-- 1 (t--u)-(u)du

Oo(t)-- (t),
(t)--F(a+l)t-q(t) (0_a_ 1).

2. In 1957 Prasad and Bhatt [5 established the following theorem:
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THEOREM A. If {} is a convex sequence such that ,n-n is
convergent, and 0.() (0_<a_<l) is of bounded variation in (0, =), then
the series A(t), at t-x, is summable IC, al.

Since a Lebesgue integral is absolutely continuous, it is plain
that (t) is of bounded variation in any range (, ),0. A neces-
sary consequence of the above result is the following theorem:

THEOREM B. The summability ]C, 1] of the factored Fourier
series nAn($) at a given point depends only upon the behaviour of
the generating function in the immediate neighbourhood of the point
and is thus a local property.

Very recently Lal 3 proved the following theorem:
THEOREM C. If {n} is a convex sequence such that n- is

convergent, then the summability IN, 1 of the series {An(t)
n+l

log (n+l)/n} at a point can be ensured by a local property.
Applying the absolute NSrlund summability method, which is

more general than both the C, 11 summability and absolute harmonic
summability, the object of this paper is to investigate a suitable type
of factor so that the summability IN, PI of the factored Fourier
series becomes a local property.

In what follows we establish the following
THEOREM. If {Pn} and {P--Pn/} are both non-negative and

non-increasing and {n} is a convex sequence such that ,n-2n i8
convergent, then IN, Pn summability of An(t)2nPn/n depends only
on the behaviour of the generating function f(t) in the immediate
neighbourhood of the point t--x.

It is evident that Theorems B and C follow as special cases of

our theorem in the cases in which p--I and Pn--
1 respectively.

n+l
:. The proof of the theorem is based on the following lemma.
Lemma ([1, Theorem 1). Suppose that fn(x) is measurable in

(a, b) where b--a

_
for n- 1, 2,. .. Then a necessary and su.cient

condition that, for every function 2(x) integrable (L) over (a,b), the
functions fn(X)2(X) should be integrable (L) over (a, b) and

,=1
2(x)f(x) dx _K

is that

If (x)1_< K,

where K is an absolute constant, for almost every x in (a, b).
4o PROOF OF THEOREM. Since

=0 Pn =0
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where
An(t)Pn2n

U

we have

=o\ Pn
,(PnP--PPn)Un_
PnP-I =o

For the Fourier series of f(t) at t-x,

An(t)--.2 fc(t) co t at,

so that

tn--tn_--

say.
Hence

2 (t) p =o’(PPn-k---Pn-k-Pn)Pk+vk/- COS (k+l)t dt

" t)K(, t)dt,

Thus in order to prove the theorem we have to establish that
2 t)K(n, t)dt < .

But by virtue of the Lemma, it is suNeient for our purpose to
show that

(4.1) -, K(n, t) <_ A,
--2

for 0<_t_<, where A is a positive constant not necessarily the
same one each time it occurs.

Now

-,(PnPn_k___pn_k_pn P+]+lCOS (k+l)t’=PPn-I :o__
1 - n,t)

"=PPn-
say.

Applying Abel’s transformation, we get

{M(n, t)-- A (PnP Pn Pn) p+l+l (v+l)t: -- -- -i co
k=O k=O

n--1

+(PnPo--PoP) Pn2n-cos (+ 1)t.
n v=O
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Therefore, for 03_<t_<7, we have

=oM(n’ t) _< A
=o

zl .Ppn__--P__p. P/2/-k--i +AP 2--n
=A[,+E,

say.
Clearly

(4.2)

Now

n=2nPn-

(4.3)
say.

(4.4)

(4.5)
say.

Again

,_ 1 l[Pp_
_--P__p} P

PnPn_l=o

-=o i -- --=+ PPn-

+0[P+’2+’+=o k+ 1 PuPa_

o(1).

Now

,=PnPn_



No. 6 Summability of Factored Fourier Series 383

=o (
, (P,--Pn k-=)zl 1

1n=k+2 Pn-
<A d P+

-o

=o i +oo
+o -i

(4.6) O(1),
as m, since P=--P=__ decreases as n increases.

Also

2Pnn- 122-n=2 n-l k=O (

<N -N(-----)(+ t i=P- =o

=o [ i =+ Pn-

:o >7: i +o:0+
+O

L:0 k+l

oL=,+1
(4.7) =0(1).

With the help of results fro (4.2) to (4.7), (4.1) follows, hich
completes the proof of the theorem.

I am very much indebted to Professor B. N. Prasad, F.N.I. for
his kind interest and advice in the preparation of this paper.
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