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Department of Mathematics, Osaka University
(Comm. by Kinjird KUNUGI, M.J.A., June 12, 1964)

Introduction. The theory of singular integral operators of A.
P. Calderén and A. Zygmund [1] has been applied to the various
problems in partial differential equations, since A. P. Calderén [2]
succeeded in proving the general theorem for the uniqueness of solu-
tions of the Cauchy problem by using this theory. S. Mizohata in the
notes [7], [8], and [9] proved the many interesting theorems for
the uniqueness by modifying the notion of singular integral operators,
M. Yamaguti [12] applied these operators to the existence theorem
of solutions of the Cauchy problem for hyperbolic differential equa-
tions and M. Matsumura [6] applied to the existence and non-existence
theorems of local solutions of the general equations.

In the note [4] we introduced singular integral operators of class

m and proved the theorems of [7] and [8] by a unified method, and
also in [5] we generalized the theorem of [9] by applying the oper-
ators of this class.

In the present note we shall give a definition of singular integral
operators which governs operators of class C?, and prove that the main
theorems relating to operators of [1] hold for the present operators.
In this theory we do not require the homogeneity of the symbol
a(H)(x,7) in » (Definition 4), but assume the analyticity in 7. The
technique of almost all the proofs is based on [10] and [12], and
the exposition is self-contained. I thank here my colleague K. Ise for
helpful discussions.

1. Definitions and lemmas. Let z=(x,---,2,) be a point of
Euclidean n-space R%, £¢=(&,--+,&,) be a point of its dual space E?
and a=(ay,--+,a,) denote a real vector whose elements are non-

negative integers.
We shall use the notations:
al=al- e, |a|=a;+- - ta,, v-E=284 - w8,
D,=D,,---, D, )=(0/0x,- - -, 0/0x,), x*=axt-- 25", D;=(---,ete.
The terminology employed is that of L. Schwarz [117.

The Fourier transform F[u](é)=1(¢) of a function uel? is
defined by

&Flul®)= % e () da.
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We have, then, for ue¢S,” and 7S,

(1.1) reu=(2r)"*a7,

and for a(x)e B, the expansion

@ =% =D puE)+ S -ore )
1glea|sl-1 ol |a|=l

where a,(x, ¥)e B(R: X R}) and
(1.3) | DiDfad(x, y) IéCklﬂEksgp | D¥a(x)|, k=|a|+|B[+]8].
Definition 1. We call a distribution 2¢S’ s of type (o, 7), 0,

>0, if :2\(5) 18 a function which is positive and infinitely differen-
tiable in E?—{0}, and satisfies

D) &M SCAO+D=C(Je[V+1)

i) | DIAE)|SCAE) 1 for |§[21.
Remark. If E(E) is bounded in a neighborhood of the origin,

then the second inequality of i) is derived from ii) by setting |a|=1.
Now we define a Hilbert space 9, (—oo <p<+ ) by

(15) §,={ucS;q, function |u|}= f (L2802 | 4(&) ['de < oo).

Clearly $,=L2 In this case we write ||u||,=]||u]||,: or simply ||u].
Definition 2. A convolution operator I':S,—S, 1is called of

class T(p)=T(p, ), — o <p< +oo, of I' is defined by I'u=y*u, ucs,

where yeS and 7 satisfies

(L6) i) supp7(§)* C Er—{0}

' il) 7(6)eC=(Ef) and |DiF(§)|=C, A" *"" for &=0.

Then, by (1.1) we can write

(L.7) ru= [P @@ ds, ues..

Definition 3. A conwvolution operator A° (6=0) associated with
A 18 defined by

(1.8) tru= [T e aE) e, ues.

Next we assume there exists a transformation
Ts : E?af:(él,- ) Sn)'_’ﬂ:(ﬂl" ) 1]s)€E,‘; for 5#0

such that 7,(¢), j=1,---,s are bounded functions belonging to C* in
E?—{0} and satisfy
(1.9) | Diny(8)|=Cat(§)<! for [£|=1.
We must remark, in general sxn.

Lemma 1. For I'eT(p) we define Dix*I" by (DixI"yu=(Dix*r)*u,
ueS,. Then we have

(1.4)

1) S, denotes the class of rapidly decreasing functions, S the class of distributions

on Sz, and B, the class of infinitely differentiable functions whose derivatives are all
bounded.

2) For a function u(x), supp u= the closure of {x; u(x)x03.
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) al'eT(p—plal)
ii) If p=0 and k=p/(2p), then (1—4)*AP=A?(1—4)"* is ex-
tended to a bounded operator im L.
iii) If |a|>{(n+|8|)c+p} 0, then Dix*y is a function of Lk and
we have

(120) || Dyl SCos Max ||+ €D DFPE) L
We can, therefore, extend Dix"I" to a bounded operator in L: and have
(1.11) [ (Di My || 2 < || Diy |] 1+ | || .

Proof. i) and ii) are clear by (1.6) and (1.4). iii) As Dix*r=
(27r)‘"/2fe‘/"—1“"W“..‘ilalﬂﬂlyp;ﬂ@ds, we have
I(@)=| A+ x| Dl |

(L12) <(20) " [ (L= 40 Dip @)} dg
<C., Max [ (L+]e])*| Dy +7(9)]ds.

From ii) of (1.6) and i) of (1.4) we have
ID?H‘“?(E) l écr'a,’a | E [ (ﬂ*p(l“’l+l“l))/'.
As {p—op(|a’'|+]|a])}/r<—n—]|B]| by the assumption,
A+[eDDF*7 (&) € L.
Hence I(x) is bounded and this shows D, x*yeL.. From a well-known
formula
(1.13) 1 £5gllo=11 - llgllun, FeLt, geLe (pz1)
we get (1.11).
Now, for »”cE; and a positive number § we denote
D@, 0)={me By |n,—n"|<d, 3=1,---, s},
g)*(n(m, 5)={C€C?; le—v§°)|<5, j:l,- T S}
where C; (DE;) denote a complex s-dimensional space.

Definition 4. We call H a singular integral operator of class
S, T,) with the symbol o(H)(x, 1), if the following conditions are
satisfied.

There exist positive mumbers <& and pPeE* (1=1,---, k) for
some k such that o(H)(x,7) is written as

k
o(H)(@, )= 33 ki@, D)ai(n)

where a,(n)eCy® in D(n®,8) and h(x,n) are extended to fumctions of
B in RyX D*(9®,d) and analytic in D*(y®, &) for any fized xe Ry
Then, Hu is defined by

Hu= [ o7 " o) (w, 7(e)ie) dé, ueL:.

Since h,(x,7) (¢=1,---, k) are analytic in », by Cauchy’s formula

we can extend it as

hi(@, ) =31 (@) 0—7"), v=(u"++,v)
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where
Iv]
(114) la @) —7P) 1< sup |k, c>l-(%)

R"x Q*(ﬂ(i), o)
for (x, n)e R"X D(?, 6).
Hence, if we define convolution operators H” by
T~ .
(1.15)  Hu(§)=h (n(€))u(§) where h{”(7)=(n—1")"a(n),
we can write Hu as

(1.16) Hu= S o Hu,
i=1 v
and also by (1.9) we have
1.17) H»PI=rH»eT(p) for I'eT(p).

Definition 5. Let R, and R, be bounded operators in Li. We
write R,=R,, 0>0, if for any [eT(p) (—oo<p<+o) and g,=0
we can write

L
I(R—R)=3HI +K,

(R,—R)'= S HiI}+K,
Sfor sufficiently large I and U depending on I’ and 5,=0, where H,,
HjeS(2, Ty, I'y, I'ieT(p—0), and K,, K] are bounded operators of
order ¢,.* If we can take l=1'=0 for any I' and ¢,=0, we write
R,=R,.

Lemma 2. Let ¥ be a bounded operator in L2 defined by @(g):
Y(£)U(E) where V(&) 1s a bounded function which has compact support.
Then, ¥T=0.

Proof. It is clear as A I'¥A°: and A*¥T'A°* are bounded oper-
ators in L} for any oy, 6,=0 and "¢ T(p).

Lemma 3. Let a(x)e B, and I'eT(p), — o <p<+oo. Then for
any g,=0 we have the representation

TFo—al'= 33 m(_l)‘a[D;a-(x“F)+K§1)

a 18) 1slalsi-1 !
) — 1 a a @
=— > —(@I)D;a+K

1slalsi-1 !

for every 1>Max [{(4k+n)c+p}/p, 0] with k=[0,/(2p)+1], where
K® (1=1,2) are of order ¢, and
(1) KA

| =C.,_Max [[(1+]¢)*DEF ()l Max |Dial

= |a|sl4n+2 .
(7’=1y 2’ Oéaly Uzgao)-
Proof. Using (1.2) and remarking z°reLl for |a|=l we have
for ueS,

8) An operator K in L2 is called of order gy, if 471K A2 (0=<01, 5:<as) are bounded
operators in L%. We denote such an operator by K., with a suffix g.



372 H. KUMANO-GO [Vol. 40,

(l'a—alu=7,({a(zr—y)—a(@)}u(@—y))
(—1)=

TigiEEe — Dza(2)- (y"r, N(w(x—y))
+ ('S [@ne—1)-a s puw)dy

=lLu-+ Lu.
It is easy to see

— 1)l
TLu= 3] (—?LD;a-(x“F)u.

1gla]si-1 @
For k=[0,/(20)+1] if we write A"I,A"u as
A LA u= A1 — ) (A — 4 I,(1— 41— d)*A°>u,
then, by ii) of Lemma 1 we may only prove the boundedness of
J=1—4)*[,(1—4)*.
[ (Ju)() |

=|a-10 2 [@ne—v)-a e a—0)1-4)u0) dy)
=| [a— 40— 2@ E—1)- 0 s—puw)iy|
=C, Max sup|DiDfa.(x y)| M f |(Déer)(@—v) | | w(y)|dy.

181+ 87| =1% @,y lﬁlgt)li
Here we remark Dix*reL} by iii) of Lemma 1 and
la| =1>{(4k+mn)c+pl/p.
Hence we have by (1.83) and (1.18)
1(Ju)(@) |2 <Cy,, Max |Dia| -Max || Diz"y ||t || % |]z.
18] S4k+1 1814k

This shows that the first equality of (1.18) holds. The second is
obtained, if we expand (a(x—y)—a(x)) with the base (x—y). Q.E.D.

Let {g°} be the set of lattice points in R; and {a,} a set of
functions of 4, such that

apo(®)€Ci(Dyos), | Diago(®) |4, for |al<k
where >0 is a fixed constant and
Dy s= 5| 2— g <3).

If we set g=¢/og° and a,(x)=a,(d/ex), then
(120)  a,@)eCo(D, ), |Dia,@)|<Ae for |al<k.

Lemma 4 (S. Mizohata). Let {a,} be a set of functions of (1.20)
and I'eT(p) where 0<p=op.

Then we have for every 0<s<1

Z“(rag—aar)u”ﬁ
(1.21) 7

<Ce (1 sup| D)+ 3 o7 1) |l
where 1=2 Max {[(nt+p)/(20)+1], [n/4+1]}.

Proof. Set Iu=(I"a,—a,/")u. Then, by the similar way as the
proof of Lemma 3 we have

0@
sty 3 (@ Du@+ 3 ([ 1@ nE=1)] 1))
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Here we remark x*y e L; by iii) of Lemma 1 and |D;a,|< A" for |a|<1.
If x€9D, ., we have a,(x—y)=0 for |y|<|x—g|/2.
Hence a,(x—y)/|y|'cC;°(R}), so that we have
|w)@) |=[(Lau)@) |=]rly'e(z—y)/|y |- w(x—y))|
02 [1Ualne—) 1) | dy, 269,
Here we remark |«|' is a polynomial, as ! is even number. Since

|e—g| #=C,e~®* ™ for 2l>n, we have
glz—g|ze

123) S @Syl [(olnE—u)] [uw)|dy

4 9,2¢
As the number of g such that xe¢9),,. is finite and independent of ¢,
we see from (1.22) and (1.23) that (1.22) holds even if we replace

PN
|(L;u)(@)|* by ;l(fgu)(x)ﬁ Then, using sgplx“r($)|=sgp|D??(E)|<°°
for 0<p=<p and (1.13), we get (1.21). Q.E.D.

(References are listed at the end of the next article, p. 378.)



