368 [Vol. 40,

81. On a Definition of Singular Integral Operators. I

By Hitoshi Kumano-go

Department of Mathematics, Osaka University (Comm. by Kinjirô Kunugi, M.J.A., June 12, 1964)

Introduction. The theory of singular integral operators of A. P. Calderón and A. Zygmund [1] has been applied to the various problems in partial differential equations, since A. P. Calderón [2] succeeded in proving the general theorem for the uniqueness of solutions of the Cauchy problem by using this theory. S. Mizohata in the notes [7], [8], and [9] proved the many interesting theorems for the uniqueness by modifying the notion of singular integral operators, M. Yamaguti [12] applied these operators to the existence theorem of solutions of the Cauchy problem for hyperbolic differential equations and M. Matsumura [6] applied to the existence and non-existence theorems of local solutions of the general equations.

In the note [4] we introduced singular integral operators of class $C_{\mathfrak{m}}^{m}$ and proved the theorems of [7] and [8] by a unified method, and also in [5] we generalized the theorem of [9] by applying the operators of this class.

In the present note we shall give a definition of singular integral operators which governs operators of class $C_{\mathfrak{M}}^m$, and prove that the main theorems relating to operators of [1] hold for the present operators. In this theory we do not require the homogeneity of the symbol $\sigma(H)(x,\eta)$ in η (Definition 4), but assume the analyticity in η . The technique of almost all the proofs is based on [10] and [12], and the exposition is self-contained. I thank here my colleague K. Ise for helpful discussions.

1. Definitions and lemmas. Let $x = (x_1, \dots, x_n)$ be a point of Euclidean *n*-space R_x^n , $\xi = (\xi_1, \dots, \xi_n)$ be a point of its dual space E_{ξ}^n and $\alpha = (\alpha_1, \dots, \alpha_n)$ denote a real vector whose elements are nonnegative integers.

We shall use the notations:

$$\alpha! = \alpha_1! \cdots \alpha_n!, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n, \quad x \cdot \xi = x_1 \xi_1 + \cdots + x_n \xi_n,$$

$$D_x = (D_{x_1}, \cdots, D_{x_n}) = (\partial/\partial x_1, \cdots, \partial/\partial x_n), \quad x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \quad D_{\xi} = (\cdots, \text{etc.})$$
The terminology employed is that of L. Schwarz [11].

The Fourier transform $\mathfrak{F}[u](\xi) = \hat{u}(\xi)$ of a function $u \in L_x^2$ is defined by

$$\mathfrak{F}[u](\xi) = \frac{1}{\sqrt{2\pi^n}} \int e^{-\sqrt{-1}x\cdot\xi} u(x) dx.$$

We have, then, for $u \in S_x^{(1)}$ and $\gamma \in S_x'$

$$\widehat{\gamma * u} = (2\pi)^{n/2} \widehat{u} \widehat{\gamma},$$

and for $a(x) \in \mathcal{B}_x$ the expansion

(1.2)
$$a(y) = \sum_{1 \le |\alpha| \le l-1} \frac{(y-x)^{\alpha}}{\alpha!} D_x^{\alpha} a(x) + \sum_{|\alpha|=l} (y-x)^{\alpha} a_{\alpha}(x, y)$$

where $a_{\alpha}(x, y) \in \mathcal{B}(R_x^n \times R_y^n)$ and

$$(1.3) \qquad |D_x^{\beta} D_y^{\beta'} a_{\alpha}(x, y)| \leq C_k \sum_{|\beta'| = k} \sup_{x} |D_x^{\beta'} a(x)|, \quad k = |\alpha| + |\beta| + |\beta'|.$$

Definition 1. We call a distribution $\lambda \in S'$ is of type (ρ, τ) , ρ , $\tau > 0$, if $\widehat{\lambda}(\xi)$ is a function which is positive and infinitely differentiable in $E_{\xi}^{n} - \{0\}$, and satisfies

(1.4) i)
$$|\xi|^{1/\tau} \leq C(\hat{\lambda}(\xi)+1) \leq C'(|\xi|^{1/\rho}+1)$$

ii) $|D_{\varepsilon}^{\alpha}\hat{\lambda}(\xi)| \leq C_{\alpha}\hat{\lambda}(\xi)^{1-\rho|\alpha|}$ for $|\xi| \geq 1$.

Remark. If $\hat{\lambda}(\xi)$ is bounded in a neighborhood of the origin, then the second inequality of i) is derived from ii) by setting $|\alpha|=1$.

Now we define a Hilbert space \mathfrak{H}_p $(-\infty by$

$$(1.5) \quad \mathfrak{H}_p = \{u \in \mathcal{S}'; \, \widehat{u}, \ \ \text{function} \ \ ||\, u\,||_p^2 = \int (1+\widehat{\lambda}(\xi))^{2p} \, |\, \widehat{u}(\xi)\,|^2 d\xi < \infty\}.$$

Clearly $\mathfrak{H}_0 = L^2$. In this case we write $||u||_0 = ||u||_{L^2}$ or simply ||u||.

Definition 2. A convolution operator $\Gamma: \mathcal{S}_x \xrightarrow{\text{into}} \mathcal{S}_x$ is called of class $T(p) = T(p, \lambda)$, $-\infty , if <math>\Gamma$ is defined by $\Gamma u = \gamma * u$, $u \in \mathcal{S}$, where $\gamma \in \mathcal{S}'$ and $\widehat{\gamma}$ satisfies

i) supp
$$\widehat{\gamma}(\xi)^{\scriptscriptstyle (2)} \subset E_{\varepsilon}^n - \{0\}$$

(1.6) ii)
$$\widehat{\gamma}(\xi) \in C^{\infty}(E_{\ell}^{n})$$
 and $|D_{\ell}^{a}\widehat{\gamma}(\xi)| \leq C_{r,a}\widehat{\lambda}(\xi)^{p-\rho|a|}$ for $\xi \neq 0$.

Then, by (1.1) we can write

(1.7)
$$\Gamma u = \int e^{\sqrt{-1} x \cdot \xi} \widehat{\gamma}(\xi) \, \widehat{u}(\xi) \, d\xi, \ u \in \mathcal{S}_x.$$

Definition 3. A convolution operator Λ^{σ} ($\sigma \ge 0$) associated with λ is defined by

(1.8)
$$\Lambda^{\sigma} u = \int e^{\sqrt{-1} x \cdot \xi} \widehat{\lambda}(\xi)^{\sigma} \widehat{u}(\xi) d\xi, \quad u \in \mathfrak{F}_{\sigma}.$$

Next we assume there exists a transformation

$$T_s: E_{\xi}^n \ni \xi = (\xi_1, \dots, \xi_n) \longrightarrow \eta = (\eta_1, \dots, \eta_s) \in E_{\eta}^s \text{ for } \xi \neq 0$$

such that $\eta_j(\xi)$, $j=1,\dots,s$ are bounded functions belonging to C^{∞} in $E_{\xi}^n-\{0\}$ and satisfy

$$(1.9) |D_{\varepsilon}^{\alpha} \gamma_{j}(\xi)| \leq C_{\alpha} \widehat{\lambda}(\xi)^{-\rho|\alpha|} \text{for} |\xi| \geq 1.$$

We must remark, in general $s \neq n$.

Lemma 1. For $\Gamma \in \mathbf{T}(p)$ we define $D_x^{\beta} x^{\alpha} \Gamma$ by $(D_x^{\beta} x^{\alpha} \Gamma) u = (D_x^{\beta} x^{\alpha} \gamma) * u$, $u \in \mathcal{S}_x$. Then we have

¹⁾ S_x denotes the class of rapidly decreasing functions, S_x' the class of distributions on S_x , and \mathcal{B}_x the class of infinitely differentiable functions whose derivatives are all bounded.

²⁾ For a function u(x), supp u = the closure of $\{x; u(x) \neq 0\}$.

- i) $x^{\alpha}\Gamma \in T(p-\rho|\alpha|)$
- ii) If $p \ge 0$ and $k \ge p/(2\rho)$, then $(1-\Delta)^{-k} \Lambda^p = \Lambda^p (1-\Delta)^{-k}$ is extended to a bounded operator in L^2_x .
- iii) If $|\alpha| > \{(n+|\beta|)\tau + p\}/\rho$, then $D_x^{\beta}x^{\alpha}\gamma$ is a function of L_x^1 and we have

$$(1.10) \qquad \qquad ||D_x^{\beta} x^{\alpha} \gamma||_{L_x^1} \leq C_{n,\beta} \max_{|\alpha'| \leq n+2} ||(1+|\xi|)^{!\beta} D_{\xi}^{\alpha'+\alpha} \widehat{\gamma}(\xi)||_{L_{\xi}^1}.$$

We can, therefore, extend $D_x^{\beta}x^{\alpha}\Gamma$ to a bounded operator in L_x^2 and have (1.11) $||(D_x^{\beta}x^{\alpha}\Gamma)u||_{L^2} \leq ||D_x^{\beta}x^{\alpha}\gamma||_{L^1} \cdot ||u||_{L^2}$.

Proof. i) and ii) are clear by (1.6) and (1.4). iii) As $D_x^{\beta}x^{\alpha}\gamma = (2\pi)^{-n/2} \int e^{\sqrt{-1}\,x\cdot\xi} \sqrt{-1}^{|\alpha|+|\beta|} \xi^{\beta} D_{\xi}^{\alpha} \hat{\gamma}(\xi) \,d\xi$, we have

$$\begin{split} I(x) &\equiv |\, (1+|x|^2)^{\lceil n/2+1\rceil} D_x^\beta x^\alpha \gamma \,| \\ &\leq (2\pi)^{-n/2} \int |\, (1-\varDelta_{\varepsilon})^{\lceil n/2+1\rceil} \{\xi^\beta D_{\varepsilon}^\alpha \widehat{\gamma}(\xi)\} \,|\, d\xi \\ &\leq C_{n,\beta} \max_{|\alpha'| \leq n+2} \int (1+|\xi|)^{|\beta|} \,|\, D_{\varepsilon}^{\alpha'+\alpha} \widehat{\gamma}(\xi) \,|\, d\xi. \end{split}$$

From ii) of (1.6) and i) of (1.4) we have

$$|D_{\xi}^{\alpha'+\alpha}\widehat{\gamma}(\xi)| \leq C_{r,\alpha',\alpha} |\xi|^{\{p-\rho(|\alpha'|+|\alpha|)\}/.}$$

As
$$\{p-\rho(\lceil \alpha' \rceil + \lceil \alpha \rceil)\}/\tau < -n-\lceil \beta \rceil$$
 by the assumption, $(1+\lvert \xi \rvert)^{\lceil \beta \rceil} |D_{\varepsilon}^{\alpha' + \alpha} \widehat{\gamma}(\xi)| \in L_{\varepsilon}^{1}$.

Hence I(x) is bounded and this shows $D_x x^{\alpha} \gamma \in L^1_x$. From a well-known formula

(1.13)
$$||f*g||_{L^p} = ||f||_{L^1} \cdot ||g||_{L^p}, \ f \in L^1, \ g \in L^p \ (p \ge 1)$$
 we get (1.11).

Now, for $\eta^{(0)} \in E^s_n$ and a positive number δ we denote

$$\mathcal{Q}(\eta^{(0)}, \delta) = \{ \eta \in E_{\eta}^s; \mid \eta_j - \eta_j^{(0)} \mid <\delta, \ j=1, \cdots, s \}, \\ \mathcal{Q}^*(\eta^{(0)}, \delta) = \{ \zeta \in C_{\xi}^s; \mid \zeta_j - \eta_j^{(0)} \mid <\delta, \ j=1, \cdots, s \}$$

where C_5^s ($\supset E_7^s$) denote a complex s-dimensional space.

Definition 4. We call H a singular integral operator of class $S(\lambda, T_s)$ with the symbol $\sigma(H)(x, \eta)$, if the following conditions are satisfied.

There exist positive numbers $\delta < \delta'$ and $\eta^{(i)} \in E^s$ $(i=1,\dots,k)$ for some k such that $\sigma(H)(x,\eta)$ is written as

$$\sigma(H)(x,\eta) = \sum_{i=1}^k h_i(x,\eta)\alpha_i(\eta)$$

where $\alpha_i(\eta) \in C_0^{\infty}$ in $\mathcal{Q}(\eta^{(i)}, \delta)$ and $h_i(x, \eta)$ are extended to functions of \mathcal{B} in $R_x^n \times \mathcal{D}^*(\eta^{(i)}, \delta')$ and analytic in $\mathcal{D}^*(\eta^{(i)}, \delta')$ for any fixed $x \in R_x^n$. Then, Hu is defined by

$$Hu = \frac{1}{\sqrt{2\pi^n}} \int e^{\sqrt{-1} x \cdot \xi} \sigma(H)(x, \eta(\xi)) \widehat{u}(\xi) d\xi, \ u \in L^2_x.$$

Since $h_i(x, \eta)$ $(i=1, \dots, k)$ are analytic in η , by Cauchy's formula we can extend it as

$$h_i(x, \eta) = \sum_{i} a_i^{(\nu)}(x) (\eta - \eta^{(i)})^{\nu}, \ \nu = (\nu_1, \dots, \nu_s)$$

where

$$(1.14) |\alpha_{i}^{(\nu)}(x)(\eta - \eta^{(i)})^{\nu}| \leq \sup_{R^{n} \times \mathcal{D}^{*}(\eta^{(i)}, \delta')} |h_{i}(x, \zeta)| \cdot \left(\frac{\delta}{\delta'}\right)^{|\nu|}$$
 for $(x, \eta) \in R^{n} \times \mathcal{D}(\eta^{(i)}, \delta)$.

Hence, if we define convolution operators $H_i^{(\nu)}$ by

(1.15) $\widehat{H_i^{(\nu)}u}(\xi) = h_i^{(\nu)}(\eta(\xi))\widehat{u}(\xi)$ where $h_i^{(\nu)}(\eta) = (\eta - \eta^{(i)})^{\nu}\alpha_i(\eta)$, we can write Hu as

(1.16)
$$Hu = \sum_{i=1}^{k} \sum_{\nu} a_i^{(\nu)} H_i^{(\nu)} u,$$

and also by (1.9) we have

(1.17)
$$H_i^{(\nu)} \Gamma = \Gamma H_i^{(\nu)} \in \mathbf{T}(p) \quad \text{for} \quad \Gamma \in \mathbf{T}(p).$$

Definition 5. Let R_1 and R_2 be bounded operators in L_x^2 . We write $R_1 \stackrel{\theta}{=} R_2$, $\theta > 0$, if for any $\Gamma \in \mathbf{T}(p)$ $(-\infty and <math>\sigma_0 \ge 0$ we can write

$$\Gamma(R_1 - R_2) = \sum_{j=1}^{l} H_j \Gamma_j + K_{\sigma_0}$$
 $(R_1 - R_2)\Gamma = \sum_{j=1}^{l'} H'_j \Gamma'_j + K'_{\sigma_0}$

for sufficiently large l and l' depending on Γ and $\sigma_0 \ge 0$, where H_j , $H'_j \in S(\lambda, T_s)$, Γ_j , $\Gamma'_j \in T(p-\theta)$, and K_{σ_0} , K'_{σ_0} are bounded operators of order σ_0 . If we can take l = l' = 0 for any Γ and $\sigma_0 \ge 0$, we write $R_1 \stackrel{\sim}{=} R_2$.

Lemma 2. Let Ψ be a bounded operator in L^2_x defined by $\widehat{\Psi u}(\xi) = \psi(\xi)\widehat{u}(\xi)$ where $\psi(\xi)$ is a bounded function which has compact support. Then, $\Psi \stackrel{\cong}{=} 0$.

Proof. It is clear as $\Lambda^{\sigma_1}\Gamma\Psi\Lambda^{\sigma_2}$ and $\Lambda^{\sigma_1}\Psi\Gamma\Lambda^{\sigma_2}$ are bounded operators in L^2_x for any σ_1 , $\sigma_2\geqq 0$ and $\Gamma\in T(p)$.

Lemma 3. Let $a(x) \in \mathcal{B}_x$ and $\Gamma \in T(p)$, $-\infty . Then for any <math>\sigma_0 \ge 0$ we have the representation

(1.18)
$$\Gamma a - a\Gamma = \sum_{1 \le |\alpha| \le l-1} \frac{(-1)^{|\alpha|}}{\alpha!} D_x^{\alpha} a \cdot (x^{\alpha} \Gamma) + K_{\sigma_0}^{(1)}$$
$$= -\sum_{1 \le |\alpha| \le l-1} \frac{1}{\alpha!} (x^{\alpha} \Gamma) D_x^{\alpha} a + K_{\sigma_0}^{(2)}$$

for every l> Max $[\{(4k+n)\tau+p\}/\rho,0]$ with $k=[\sigma_0/(2\rho)+1]$, where $K_{\sigma_0}^{(i)}$ (i=1,2) are of order σ_0 and

$$(1.19) \qquad ||A^{i_1}K_{\varsigma_0}^{\varsigma_0}A^{i_2}|| \\ \leq C_{\sigma_0, l} \max_{l \leq |\alpha| \leq l+n+2} ||(1+|\xi|)^{4k} D_{\xi}^{\alpha} \widehat{\gamma}(\xi)||_{L^1} \max_{|\beta| \leq 4k+l} |D_x^{\beta} \alpha| \\ (i=1, 2, 0 \leq \sigma_1, \sigma_2 \leq \sigma_0).$$

Proof. Using (1.2) and remarking $x^{\alpha}\gamma \in L^1_x$ for $|\alpha|=l$ we have for $u \in \mathcal{S}_x$

³⁾ An operator K in L_x^2 is called of order σ_0 , if $\Lambda^{\sigma_1}K\Lambda^{\sigma_2}$ $(0 \le \sigma_1, \sigma_2 \le \sigma_0)$ are bounded operators in L_x^2 . We denote such an operator by K_{σ_0} with a suffix σ_0 .

$$egin{aligned} (arGamma a arGamma)u = & \gamma_y(\{a(x-y)-a(x)\}u(x-y)) \ &= \sum_{1 \leq |lpha| \leq l-1} rac{(-1)^{|lpha|}}{lpha!} D_x^lpha a(x) \cdot (y^lpha \gamma_y)(u(x-y)) \ &+ (-1)^l \sum_{|lpha| = l} \int (x^lpha \gamma)(x-y) \cdot a_lpha(x,x-y)u(y) \, dy \ &\equiv I_1 u + I_2 u. \end{aligned}$$

It is easy to see

$$I_1 u = \sum_{1 \leq |\alpha| \leq l-1} \frac{(-1)^{|\alpha|}}{\alpha!} D_x^{\alpha} a \cdot (x^{\alpha} \Gamma) u.$$

For $k = [\sigma_0/(2\rho) + 1]$ if we write $\Lambda^{\sigma_1}I_2\Lambda^{\sigma_2}u$ as

$$\Lambda^{\sigma_1} I_2 \Lambda^{\sigma_2} u = \Lambda^{\sigma_1} (1 - \Delta)^{-k} \{ (1 - \Delta)^k I_2 (1 - \Delta)^k \} (1 - \Delta)^{-k} \Lambda^{\sigma_2} u,$$

then, by ii) of Lemma 1 we may only prove the boundedness of $J=(1-\varDelta)^kI_2(1-\varDelta)^k$.

|(Ju)(x)|

$$\leq \left| (1 - \Delta_x)^k \sum_{|\alpha| = l} \int (x^{\alpha} \gamma)(x - y) \cdot \alpha_{\alpha}(x, x - y)(1 - \Delta_y)^k u(y) dy \right|$$

$$= \left| \int (1 - \Delta_x)^k (1 - \Delta_y)^k \{ (x^{\alpha} \gamma)(x - y) \cdot \alpha_{\alpha}(x, x - y) \} u(y) dy \right|$$

$$\hspace{2cm} \leqq C_k \max_{|\beta'|+|\beta''|=4k} \sup_{x,y} |D_x^{\beta'} D_y^{\beta''} a_{\boldsymbol{\alpha}}(x,y)| \max_{|\beta| \leqq 4k} \int |(D_x^{\beta} x^{\boldsymbol{\alpha}} \gamma)(x-y)| \ |u(y)| \, dy.$$

Here we remark $D_x^{\beta}x^{\alpha}\gamma \in L_x^1$ by iii) of Lemma 1 and

$$|\alpha| = l > \{(4k+n)\tau + p\}/\rho$$
.

Hence we have by (1.3) and (1.13)

$$||\, (Ju)(x)\, ||_{L^2} \! \leq \! C_{k,\, l} \, \max_{|\beta| \leq 4k+l} |D_x^\beta a\, | \cdot \max_{|\beta| \leq 4k} ||\, D_x^\beta x^\alpha \gamma \, ||_{L^1} \cdot ||\, u\, ||_{L^2} \, .$$

This shows that the first equality of (1.18) holds. The second is obtained, if we expand (a(x-y)-a(x)) with the base (x-y). Q.E.D.

Let $\{g^0\}$ be the set of lattice points in R^n_x and $\{a_{g^0}\}$ a set of functions of \mathcal{B}_x such that

$$a_{g} \circ (x) \in C_0^\infty(\mathcal{D}_{g^0,\delta}), \mid D_x^{lpha} a_{g^0}(x) \mid \leq A_{0,k} \quad \text{for} \quad \mid \alpha \mid \leq k$$

where $\delta > 0$ is a fixed constant and

$$\mathcal{Q}_{g^0,\delta} = \{x; |x-g^0| < \delta\}.$$

If we set $g = \varepsilon/\delta g^0$ and $a_g(x) = a_{g0}(\delta/\varepsilon x)$, then

$$(1.20) a_g(x) \in C_0^{\infty}(\mathcal{Q}_{g,\delta}), |D_x^{\alpha}a_g(x)| \leq A_k \varepsilon^{-|\alpha|} \text{ for } |\alpha| \leq k.$$

Lemma 4 (S. Mizohata). Let $\{a_q\}$ be a set of functions of (1.20) and $\Gamma \in \mathbf{T}(p)$ where 0 .

Then we have for every $0 < \varepsilon < 1$

(1.21)
$$\sum_{g} || (\Gamma a_g - a_g \Gamma) u ||_{L^2}$$

$$\leq C_i \varepsilon^{-2i} A_i^2 \{ \sum_{1 \leq |\alpha| \leq l-1} \sup_{\xi} |D_{\xi}^{\alpha} \widehat{\gamma}(\xi)|^2 + \sum_{|\alpha| = l} ||x^{\alpha} \gamma||_{L^1}^2 \} ||u||_{L^2}^2$$

where $l=2 \max \{ \lfloor (n\tau+p)/(2\rho)+1 \rfloor, \lfloor n/4+1 \rfloor \}$.

Proof. Set $I_q u = (\Gamma a_q - a_q \Gamma)u$. Then, by the similar way as the proof of Lemma 3 we have

$$(2.22) \qquad |(I_g u)(x)| \\ \leq C_t \varepsilon^{-2t} A_t^2 \{ \sum_{|\alpha| \leq t-1} |(x^{\alpha} \Gamma) u(x)|^2 + \sum_{|\alpha|=t} (\int |(x^{\alpha} \gamma)(x-y)| |u(y)| dy)^2.$$

No. 6] 373

Here we remark $x^{\alpha} \gamma \in L^1_x$ by iii) of Lemma 1 and $|D^{\alpha}_x a_q| \leq A_i \varepsilon^{-i}$ for $|\alpha| \leq l$. If $x \in \mathcal{Q}_{q,2\epsilon}$, we have $a_q(x-y)=0$ for $|y| \leq |x-g|/2$.

Hence $a_g(x-y)/|y|^l \in C_0^{\infty}(R_y^n)$, so that we have

$$\begin{aligned} &|(I_{g}u)(x)| = |(\Gamma a_{g}u)(x)| = |\gamma_{y}(|y|^{l}a_{g}(x-y)/|y|^{l} \cdot u(x-y))| \\ &\leq C'_{l} \frac{A_{0}}{|x-g|^{l}} \int |(|x|^{l}\gamma)(x-y)| \, |u(y)| \, dy, \, \, x \in \mathcal{D}_{g,2s}. \end{aligned}$$

Here we remark $|x|^l$ is a polynomial, as l is even number. Since $\sum_{g;|x-g|\geq l}|x-g|^{-2l}=C_n\varepsilon^{-(2l-n)}$ for 2l>n, we have

$$(1.23) \sum_{g; x \in \mathcal{D}_{g,2s}} |(I_g u)(x)|^2 \leq C_l'' A_0^2 \varepsilon^{-2l} \{ \int (|x|^l \gamma)(x-y) ||u(y)| dy \}^2.$$

As the number of g such that $x \in \mathcal{D}_{g,2}$, is finite and independent of ε , we see from (1.22) and (1.23) that (1.22) holds even if we replace $|(I_g u)(x)|^2$ by $\sum_g |(I_g u)(x)|^2$. Then, using $\sup_{\varepsilon} |\widehat{x^{\alpha} \gamma}(\xi)| = \sup_{\varepsilon} |D_{\varepsilon}^{\alpha} \widehat{\gamma}(\xi)| < \infty$ for 0 and (1.13), we get (1.21). Q.E.D.

(References are listed at the end of the next article, p. 378.)