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1. Ingroduc$ion. Let _if(n) be the space of all homeomorphisms
of Euclidean n-space R into itself provided with the compact-open
topology. Let Jg(n) be the subspace of all onto homeomorphisms.
Let Pl(n) be the subspace of all PL-homeomorphisms and PL(n) be
the subspace of all onto PL-homeomorphisms. Those elements in
(n), rig(n), Pl(n) and PL(n) which preserve the origin 0 will be
denoted by -fr0(n), dg0(n), Plo(n)and PLo(n)respectively. Recently
Kister 1 has shown that J(0(n) is a weak kind of deformation
retract of _6’0(n).

In the present note we show that PLo(n) is a weak kind of
deformation retract of Plo(n). More precisely:

Theorem. There is a continuous map F: Plo(n) I-Plo(n), for
each n, such that

(1) F(g, 0)-g, for all g in Plo(n),
(2) F(g, 1) is in PLo(n) for all g in Plo(n),
(3) F(h, t) is in PLo(n) for all h in PLo(n),

tinL
2. Definitions. Let R" be a Euclidean n-space. We consider

an ordinary triangulation on R. Let d be the usual metric in
Euclidean n-space R". Let p be the metric in R defined by

p(x, y)=max x-y I,
for

x= ..., y= ...,
in R’. The cube of side 2r with centre at 0 in R is denoted by
C. This set is also considered as

C= {x e R p(O, x) <_ r}.
If K is a compact set in R" containing 0, we define the square radius
of K to be

rK max {r Cc K}.
If gx, g.: K-’R are imbeddings of the compact set K, then we say g and
g. are within e, if for each x in K it is true that p(g(x), g:(x))<e. If g
is in Plo(n) and K is a compact set in R", V(g, K, e) denotes the subset
of all elements h in Plo(n) such that g lK and h]K are within e. Then
the collection of all such V(g, K, e) is, of course, a base for Plo(n).
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If O<_a<b<d and a<c<d and t is in I--0, 1, then we define
t(a, b, c, d)e PLo(n) to be the PL-homeomorphism of R onto itself,
fixed on C and outside C as follows. Let L be a ray emanating
from the origin and coordinatized by distance (in the sense of metric
p) from the origin. Then t is fixed on 0, a and on d, co), and
it takes b onto (1-t)b/tc and is linear on a, b and b, d.. We
denote t)(a, b, c, d) by t)(a, b, c, d) and t)(0, b, c, d) by O(b, c, d). Clearly
(t; a, b, c, d)--.O(a, b, c, d) is continuous, regarded as a mapping from
a subset of R into PLo(n).. A useful lemma.

Lemma. Let g and h be in Plo(n) with h(R")g(R’). Let
a, b, c and d be real numbers satisfying Ogab, Ocd and such
that h(C) g(Co). Then there is a PL-isotopy
(t e I) of R onto itself satisfying

1) %- 1,
2) qal(h(Cb)) Dg(Co),
3) q is fixed outside g(C) and on h(C:),
4) (g, h; a, b, c, d;

is a continuous map from the appropriate subset of P/0(n) Plo(n) R
into PLo(n).

Proof. Let a’ be rg-oh(C); note that a’<c. Let b’ be
rg-ioh(C); note that a’<b’<_c<d.

We first shrink h(C) inside g(C,) with a PL-homeomorphism
fixed outside h(C). This can be done as follows. Let a" be
rh-og(C,); note that a"<_ab. Define

a", b)oh-, on h(C),a
1, elsewhere.

Then a is in PLo(n).
Next we get a PL-isotopy . (t e I) taking g(C,) onto g(C,),

leaving g(C:,), and the exterior of g(C) fixed. Define

_goO(a’, b’, c, d)og-1, on g(C),
tl, elsewhere.

Then is in PLo(n).
Finally define %-a-loa. Then is in PLo(n). It is easy to

verify that (1), (2) and (3) are satisfied. The continuity of de-
pends on the following three propositions.

Proposition 1. Let g be in Plo(n), and let r and e be two positive
numbers. Then there is a >0 so that, if g is in V(g, C+, ), then

(1) g(C,+) Dg(C,),
(2) gVllg(C,) and g-lg(C,) are within
Proposition 2. Let C be a finite complex, h" C--,R an imbedding,

1) By PL-isotopy q we mean an isotopy such that for each in 0, lJ ,
is a PL-homeomorphism.
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D a finite subcomplex in R containing h(C) in its interior, and g: D--R
another imbedding. For any >0, there is a $ >0 so that, if g: D-.R,
hx: C--.R are imbeddings within of g and h respectively, then gxoh
is defined and within of goh.

Proposition 3. Let g and h be in Plo(n), and let a be a non-
negative number such that h(C)g(R). Let r=g-oh(C). Then
v-v(g, h, a) is continuous simultaneously in the variables g, h and a.

These propositions are proved quite parallel with Propositions 1,
2, 3 in Kister 1.

The continuity of 9, is easily proved by these propositions.
4. Proof of Theorem. Before we give the proof of Theorem

we .state two more propositions.
Proposition 4. Let g be in Plo(n) and r be rg(C) for each

positive integer i. Then there is an element h in Plo(n) such that
h(C)-C,, for each i, and h depends continuously on g.

Proposition 5. Let F: Plo(n) 0, 1)--Plo(n) be continuous, and
denote F(g, ) by g,. Suppose glC,-g_(,lC, for all in
1-(1/2), 1) and n-l, 2, .... Then F can be extended to Plo(n)L

These propositions are proved quite parallel with Proposition 4,
5 in Kister 1.

We return to the proof of Theorem. Let g in Plo(n) be given.
Use Proposition 4 to find h-h(g). First we shall produce a PL-
isotopy c,: R--g(R) ( e I) such that

(a) a0: h,
(b) ax(R’): g(R’),
(c) a=a(g, t) is continuous in g and .

We do this in an infinite number of steps. To define a,(te 0, 1/2)
we use the Lemma for a-0, b:c:l, d:2, and obtain q, (teI).
Define c:oh ( e 0, 1/2). Then c is in Plo(n) for e 0, 1/2, Co=h,
c1/2(C)g(Cx) and, by Proposition 4, the Lemma, and Proposition 2,
a, (te 0, 1/2) is continuous in g and t. Note that c(C)g(C) by
property (3) of the Lemma.

Next we define, c, (te 1/2,1) by again using the Lemma, this
time for "h":c1/2, a:l, b:c=2, d:3, and we obtain p, (te I). Now
define ,:_.o1/2 ( e 1/2, ). Then c is in Plo(n) for t e 1/2, , c
is an extension of that obtained in the first step, (C2)g(C2), and
.since c1/2 depends continuously on g, we can conclude as before that
a, ($e 1/2, ) is continuous in g and . Note that i(C)g(C), and
that c,IC=c1/2[C for $ in 1/2, i, by property (3) of the Lemma.

We continue in this manner defining for each integer n,
e Plo(n)($ e 1-(1/2), 1-(1/2)+) such that c_(1/2)(C) g(C) and

a ]C=c_(1/2) ]C for in 1-(1/2), 1-(1/2)+.
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Proposition 5 allows us to define e Plo(n) so that ($e I)
depends continuously on g and , and (R)=g(R).

In the second stage, we produce a PL-isotopy/9: R-R ( e I)
such that

(a) /90- h,
(b) /9- 1,
(c) /9=/9(g, ) is continuous in g and t.

This we do again in an infinite number of steps, first obtaining /9
(re 0, 1/2)as follows. We have h(C)=-C where r-rg(C), since
h was constructed so as to take cubes onto cubes.

We shall preserve this property throughout the PL-isotopy /9
( e I). Let L be any ray emanating irom the origin in R" and coordi-
natized by distance from the origin (in the sense of metric p). For t
in /, let p take the interval 0, r in L linearly onto 0, (1-t)r+ t]
and translate [r, co) to [(1-t)r+ t, co). This defines pt in PLo(n)
for each t in L Now let /gt=qtoh (te [0, 1/2). Then /gt is in Plo(n)
for te [0, 1/2, /90=h and /91/21C=1, and since r and h depend con-
tinuously on g, then p and hence /gt are continuous in g and t.

Let s be such that /91/2(C)-C, and define /gt (re [1/2, ) as
follows. Let L be any ray as before, and let qt (t e i) take [1, s
in L linearly onto [1, (1-t)s+2t, translate [s., co) onto [(1-t)s+
2t, oo), and leave [0, 1 fixed. Define tgt-pt_ot1/2(t e 1/2, ). Then
/gt is in Plo(n) for t e [1/2, }, extends /gt (t e [0, ), /9}IC.= 1, and/9..
depends continuously on g and t.

Continuing this manner, as in the first stage, we obtain a PL-
isotopy /gt (t e I) which depends continuously on g and t.

Now define
a_toaog, for t in 0, 1/2,F(g, t)- "tg_oaTog, for t in 1/2, 1.

Then F(g, t) is in Plo(n). It is easy to check that F satisfies (1)
and (2). An immediate consequence of Proposition 4 is that h is
onto if g is. Each p, that occurs in a step of the construction of
a, and/9, is onto, hence at and/9,, and finally F(g, t) is onto if g is, so
property (3) holds. Continuity of F follows from that of at and /9,
and from Proposition 1 and 2.

Reference

1 3 J. M. Kister: Microbundles are fibre bundles. Ann. of Math., 80, 190-199
(1964).


