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(Comm. by Kinjiré6 KuNuGI, M.J.A., Jan. 12, 1965)

1. Introduction. Let &(n) be the space of all homeomorphisms
of Euclidean n-space R" into itself provided with the compact-open
topology. Let 4(n) be the subspace of all onto homeomorphisms.
Let Pl(n) be the subspace of all PL-homeomorphisms and PL(n) be
the subspace of all onto PL-homeomorphisms. Those elements in
4qm), H(n), Pl(n) and PL(n) which preserve the origin 0 will be
denoted by Gy(n), S(n), Pl(n) and PL(n) respectively. Recently
Kister [1] has shown that J{(n) is a weak kind of deformation
retract of G(n).

In the present note we show that PLy(n) is a weak kind of
deformation retract of Ply(n). More precisely:

Theorem. There ts a continuous map F: Pl(n)x I—Pl(n), for
each m, such that

(1) F(g,0)=g, for all g in Pl(n),

(2) F(g,1) 18 ©n PLy(n) for all g in Pl(n),

8) F(h,t) is in PLy(n) for all h in PLyn),

t in I

2. Definitions. Let R" be a Euclidean n-space. We consider
an ordinary triangulation on R". Let d be the usual metric in
Euclidean m-space RB". Let 0 be the metric in R" defined by

o(x, y)=mgX|x,~—y.- l,

for
X=(Ly, Ty ++, ©,), y:(yn Yay ** %y Yn)

in R*. The cube of side 2r with centre at 0 in R" is denoted by
C,. This set is also considered as

C,={ze R"|0(0, x)<r}.
If K is a compact set in B containing 0, we define the square radius
of K to be

r[K]=max {r|C,C K}.
If g9, 9.: K—R™ are imbeddings of the compact set K, then we say g, and
g, are within ¢, if for each x in K it is true that o(g,(x), g,(x))<e. If g
is in Ply(n) and K is a compact set in B", V(g, K, ¢€) denotes the subset
of all elements A in Pl(n) such that g| K and #|K are within e, Then
the collection of all such V{(g, K, ¢) is, of course, a base for Pl (n).
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If 0<a<b<d and a<e<d and ¢ is in I=[0, 1], then we define
0,a, b, c, d)e PL(n) to be the PL-homeomorphism of R" onto itself,
fixed on C, and outside C; as follows. Let L be a ray emanating
from the origin and coordinatized by distance (in the sense of metric
©0) from the origin. Then 6, is fixed on [0, @] and on [d, o), and
it takes b onto (1—t)b+tc and is linear on [a,b] and [b,d]. We
denote 6,(a, b, ¢, d) by 0(a, b, ¢, d) and 6(0, b, ¢, d) by 6(b, ¢, d). Clearly
(t; a, b, ¢, d)—0,(a, b, ¢, d) is continuous, regarded as a mapping from
a subset of R® into PLy(n).

3. A useful lemma.

Lemma. Let g and & be in Pl(n) with A(R")Cg(R"). Let
a, b, ¢ and d be real numbers satisfying 0<a<b, 0<c¢<d and such
that h(C,)cg(C,). Then there is a PL-isotopy® ®.(g, k; a, b, ¢, d)=,
(te I) of R™ onto itself satisfying

1) @0219

2) @(MCy)D9(Cy),

3) @, is fixed outside ¢g(C,) and on A(C,),

4) (g’ h’; a, b1 ¢, d; t)_'q)t
is a continuous map from the appropriate subset of Pl(n)x Pl(n)x R*
into PLyn).

Proof. Let o be 7r[g~'oh(C,)]; note that a’<c. Let b be
r[g~"oh(C,)]; note that o’<b'<e<d.

We first shrink &(C,) inside ¢(C,.) with a PL-homeomorphism o
fixed outside A(C,). This can be done as follows. Let a”’ be
r[h~og(C,)]; note that o’ <a<b. Define

o — {hoﬁ(a, a”, b)oh™, on h(C,),
1, elsewhere.
Then o is in PLyn).
Next we get a PL-isotopy +. (teI) taking ¢(C,) onto ¢g(C,),
leaving g¢(C,.), and the exterior of ¢g(C;) fixed. Define
_{goat(a,’ bl, ¢, d)og—l’ on g(cd)r
Y=
1, elsewhere.
Then +, is in PLyn).

Finally define @,=0 'o4r,00. Then @, is in PLy(n). It is easy to
verify that (1), (2) and (3) are satisfied. The continuity of ¢, de-
pends on the following three propositions.

Proposition 1. Let g be in Ply(n), and let » and ¢ be two positive
numbers. Then there is a 6 >0 so that, if ¢, is in V{(g, C, ., 0), then

1) 9«(C,10)D9(C,),

@) g:'9(C,) and ¢g7'|g(C,) are within e.

Proposition 2. Let C be a finite complex, h: C—R" an imbedding,

1) By PL-isotopy ¢: we mean an isotopy ¢, such that for each ¢ in [0, 1] ¢,
is a PL-homeomorphism.
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D a finite subcomplex in B" containing #(C) in its interior, and g: D—R™
another imbedding. For any ¢>0, there is a 6 >0 so that, if g,; D—R",
h;:; C—R" are imbeddings within ¢ of g and % respectively, then g,oh,
is defined and within ¢ of goh.

Proposition 8. Let g and ~ be in Ply(n), and let @ be a non-
negative number such that h(C,)Cg(R"™). Let r=[g % h(C,)]. Then
r=r(g, h, a) is continuous simultaneously in the variables g, h and a.

These propositions are proved quite parallel with Propositions 1,
2, 3 in Kister [1].

The continuity of ¢, is easily proved by these propositions.

4. Proof of Theorem. Before we give the proof of Theorem
we state two more propositions.

Proposition 4. Let g be in Pl(n) and r; be r[g(C;)] for each
positive integer ¢. Then there is an element & in Ply(n) such that
h(C;)=C,,, for each ¢, and % depends continuously on g.

Proposition 5. Let F: Pl(n)x[0, 1)—Pl(n) be continuous, and
denote FY(g,t) by g¢,. Suppose ¢,|C,=gi_um»|C, for all ¢ in
[1—3)", 1) and n=1,2,+--. Then F can be extended to Ply(n)x I.

These propositions are proved quite parallel with Proposition 4,
5 in Kister [1].

We return to the proof of Theorem. Let g in Pl(n) be given.
Use Proposition 4 to find h=h(g). First we shall produce a PL-
isotopy a,: R"—g(R™) (teI) such that

(a) a,=h,

() a(R")=g(R"),

(¢) a,=a(g,t) is continuous in g and ¢.

We do this in an infinite number of steps. To define «a,(te [0, 3])
we use the Lemma for a=0, b=c=1, d=2, and obtain @, (tel).
Define a,=@,,0h (t€ [0, 3]). Then «, is in Pl(n) for te [0, 3], a,=h,
a3(C))Dg(C,) and, by Proposition 4, the Lemma, and Proposition 2,
a, (te [0, 4]) is continuous in g and ¢. Note that oy (C))cg(Cy) by
property (3) of the Lemma.

Next we define, a, (te[4,4]) by again using the Lemma, this
time for “A”"=ay, a=1, b=c¢=2, d=3, and we obtain ¢, (t€ I). Now
define a,=@,_oay (te[4,4]). Then a,is in Pl(n) for te[4, 1], a,
is an extension of that obtained in the first step, a3(C,)>g(C,), and
since a3 depends continuously on g, we can conclude as before that
a, (te [, ]) is continuous in g and ¢. Note that aj(C,)cg(Cy), and
that athlza%.ICl for ¢ in [4, #], by property (3) of the Lemma.

We continue in this manner defining for each integer =,
a,€ Pl(n)te [1—(3)", 1—(3)"**]) such that al_(é)n(C,,)Dg(C,.) and
a,|Cy=a,_(3)»|C, for t in [1—(3)", 1—(3)"*'].
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Proposition 5 allows us to define a,€ Pl(n) so that a, (tel)
depends continuously on g and ¢, and a (R")=g(R").

In the second stage, we produce a PL-isotopy 8,: R"—R" (te I)
such that

(a) By=h,

(b) 81:1,

(e) B:=pB(g,t) is continuous in ¢g and ¢.

This we do again in an infinite number of steps, first obtaining B,
(t€ [0, 3]) as follows. We have h(C,)=C, where r,=7[g(C,)], since
h was constructed so as to take cubes onto cubes.

We shall preserve this property throughout the PL-isotopy B
(te I). Let L be any ray emanating from the origin in R” and coordi-
natized by distance from the origin (in the sense of metric o). For ¢
in I, let @, take the interval [0, »,] in L linearly onto [0, (1—¢)r,+¢]
and translate [7,, o) to [(1—¢t)r,+t, c). This defines @, in PLyn)
for each tin I. Now let B,=@,0h (t€[0,3]). Then B, is in Ply(n)
for te [0, 4], B;=h and B3|C,=1, and since r, and h depend con-
tinuously on g, then @, and hence B, are continuous in g and ¢.

Let s, be such that By(C,)=C,, and define B, (te[3,1]) as
follows. Let L be any ray as before, and let @, (te I) take [1,s,]
in L linearly onto [1, (1—t)s,+2t], translate [s,, o) onto [(1—%)s,+
2t, ), and leave [0, 1] fixed. Define 8,=@,, 084t € [}, £]). Then
B: is in Ply(n) for te [4, ], extends B, (te [0, 1]), B3|C,=1, and B,
depends continuously on g and t.

Continuing this manner, as in the first stage, we obtain a PL-
isotopy B. (t€ I) which depends continuously on g and %.

Now define

F(g, t):{al—%odrlogy for ¢ ?n [0, 31,
By_roaiteg, for ¢ in [4,1].
Then FY(g,t) is in Ply(n). It is easy to check that F' satisfies (1)
and (2). An immediate consequence of Proposition 4 is that A is
onto if g is. Each o, that occurs in a step of the construction of
a, and B, is onto, hence «, and B,, and finally F(g, t) is onto if ¢ is, so
property (3) holds. Continuity of F' follows from that of «, and G,
and from Proposition 1 and 2.
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