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77. On the So-called Fundamental
Theorem of Integration

By Kumiko FuJitTa
(Comm, by Kinjird KUNUGI, M.J.A., April 12, 1966)

Hobson [1] called fundamental theorem of the integration the
following property of the integral that the indefinite Denjoy integral
(tn the restricted semse) has finite differential coefficient, equal to
the integrand, almost everywhere in the interval of integration.

Concerning this theorem, we shall give a more general condition,
For this purpose, consider in the first place A-integral introduced by
E. C. Titchmarsh [2] and A. Kolgomoroff [3] which enables us to
integrate every function conjugate with a summable function. It
seems that A-integral is not only too general to have the unicity
but also too special to integrate every D-integrable [4] function and

the function l.
X

On the other hand (E.R.)-integral was defined by K. Kunugi [5].
Although it is equivalent to A-integral [6], the generalized (E.R.)-
integral, named (E.R.v)-integrals by H. Okano [7], enables us to

integrate the function l, and also enables us, for every D-integrable
x
function f(x), to find an (E.R. v)-integral which gives the indefinite
(E.R. v)-integral of f(x) identical with the indefinite 9-integral of
fl@) [8].
Let us begin to consider the following condition (Q*) of Cauchy

sequence which may be regarded as a modification of the condition
(Q) introduced by H. Okano;

(Q*) 1) A, is a non-decreasing sequence of closed sets,
i) 5| fode|<e,  for mza,

where {I;} be the sequence of intervals contiguous” to A,.

Theorem 1. If a function f(x) has a Cauchy sequence
(V(&,, A,; f) € C(f;v) which satisfies the condition (Q*), then

F(ac)=(E.R.u)Sac f@)dt exists and is finite for every point x € A,,

and we have

1) We say that a closed interval I is contiguous to a closed set F' when the
interior of I is a connected compoment of CF.
2) For the notations see [7].
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@Ry fwat=|  fo@+ 2 @R f0

N (—00,2) {i: I},C(—eo, x)}

for every xe A, and
S ’ (B.R)| )it ‘ <é,

where {Ii} be the sequence of intervals contiguous to A,.
Proof. Let x€ A,, then we have

| _swar—{"_suvar
S JEROE OIS JEACEARDS PPNOTAEL

for every integer m=n. Hence we have
‘(E.R.v)r f(t)dt—g” Fu®)dt ’ <3e,. (1)
Next, let € A, and let {Ii} be the sequence of intervals contiguous
to A,, then we have, for every pair m, m’ of integers (n=m=m'),

S|, fut0t = £yt

i

S RO O S S W CXORO
<, 1FuO—Futt) | dtt I PFROT A S WE O AN
Hencf 3;2 have, for every integer m=mn,
> l (E.R.v) Sz;; Ft)dt— SI;; £u(t)dt ‘ <3e,. (3)

It follows from the relations (1) and (2), that
(@R s Fdt— 3 @R, )t

Ay (o0

< | @R[ _fa—|"_funat +| 170—fu0)dt

+3) ‘ B.R)  fat—| , 7t | STe,
for every point x e A, and every integer m=n. Hence we have
@.R)|"_styat=| FLOLZS }(E’.R.v)s fR)dt (4)
—ce &4 i I3 (—o0,%) Iy,

for every point x e A,.
It follows from the property (Q*) and the relation (3) that

| @R 0t

Ay (—oe

=3 {’(E.R.v)gli Ft)dt— S Fu(t)dt ‘ + ‘ SI; Fu(t)t ‘}gse,ﬁ :
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for every integer m=mn. Hence we have
py ‘ (E.R.v)gli f(&)dt ‘ <e, (5)

for every integer n. This completes the proof,

Theorem 2. If a function f(x) has a Cauchy sequence
(Ve AL 1) € C(f: v) which satisfies the condition (Q*), then F(x)=
(E.R.D)Sw f@)dt is AC on every A, and has the approximate
derivative F,, (x)=f(x) almost all points x of the whole interval
of imtegration.

Proof. First, let » be a fixed integer and let {I}} be the sequence

of intervals contiguous to A,, then, being f(x) summable on A4,,
there exists 7'=7%'(¢, n)>0 for every ¢>0 such that

mes (B)<7' implies SW | fa) | da < (6)

Writing F(I):(E.R.v)s f(£)d¢, there exists, for every &>0, an
I
integer k=Fk(e, n) such that

SR |< L.
i=k+1 2

Let {J,} be a sequence of intervals whose end points belong to
A,, then the inequality >1|J;|<7®= min (7', ||, |L;|, - -+, |I;|) implies

Sird)=3|{, o+ 3 R

'Ek+ | F(I}) | <e.

i=k+1

=| | £ty | dt+
4,n(UT )

Hence F(x) is AC on A,.
Next, let

() for xe 4,
gn(w)—{F(IZ)” Ii|  for zel

then ¢,(x) is summable., Writing G”(ac):gac g”(t)dt-lr(E.R.v)S% JF@®)dt

where ¢, is the greatest lower bound of A,, we have G,(¢)=F(x)
and G,(x)=g,(x) for almost all points 2 of A,. Hence, we have
f(@)=g.,(x)=G(x)=F,(x) for almost all points « of A, and F (x)=
f(x) almost everywhere., This completes the proof.

Corollary, (1) If the function f(x) has o Cauchy sequence
(Ve,, A, fu) € €(f; v) which satisfies in addition to the condition

(@*), the conditions iii) (a, b)—MQIA,,ng, iv) ’Sz( Fu@®)—Fnu@®))dt | <

Ent e, Sfor every point of the interval (a, b), then f(x) is D-integrable
on (a, b) and we have
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(Q)S: Ft)dt = (E. R.v)S: f(b)dt

for every point x of the interval (a, b).

(2) Conversely, 1f a function f(x) is D-integrable on the
interval (a, b), there exists a (E.R.v)-integral and a Cauchy sequence
(Vie,, A,; f) € €(f; v) which satisfies the conditions iii) and iv) in
addition to (Q*).

Proof. It follows from iv) and theorem 1 that there exists

finite F(x):(E.R.v)Sz f@)dt for every point « of (@, b). And it follows

from iv) that F(x) is continuous on the interval (a, b). From this
and theorem 1 F'(x) is ACG on the interval (a,b) and we have
F, (®)=f(x) almost all points « of (a,b). Hence we have

(ED)S:f(t)dtzF(x)z(E.R.v)S: F(b)dt.

The converse is clear by the corollary which we have given in
the paper “On indifinite (E.R)-integrals, II.”
Example 1. Let

(1
— for xe[—1,1]
f(x)={ v
0 otherwise,
e—-lxl
v(E):SEde,
Sn:—z—
n
1 1
An: 9, _—:I [_’ o
( n N n + )
[ f(®) for xe A,
f%(x)_{ 0 otherwise,

then the Cauchy sequence (V(e,, 4,; f.) € €(f; v) satisfies the condition
(Q*). And we have F(ac)-——(E.R.v)Sw f(t)dtzlog\xl,F;,,(w):F’(x)—%
for every point x of (—1, 1)—{0}.
Example 2. Let us begin to define a sequence {H,} of closed
sets in I,=[0,1], Let H(I) be the Harnack set in I=[a, b] whose
| 1]

measure is equal to BN and let H*(I) and H-(I) be the set of all

points « of H(I) such that x< and x> respectively. Let

a+b a-+b
2 2
H,=H(I,) and H,,,= G H(I})'H,, where {I:} be the sequence of the
=1

intervals in [0, 1] contiguous to H,. Then {H,} is the non-decreasing
sequence of closed sets,
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Let
L2
f@)={ n
0 otherwise,
v(B)= 32" mes (BN H,),
n=1

A,=H,U(—e°, 0]°[1, ),

for x e H*(I})

en: _1_’
n
¥ _{f(w) for xe€ A,
"0 otherwise,

then the Cauchy sequence (V(e,, A,; f.)) € €(f; V) satisfies the condition
(Q*). Hence there exists F'(x)=(E.R.v) Sz f@)dt and it has the

approximate derivative F,,(x)=f(x) for almost all points a of the
whole interval.

On the other hand, every interval I [0, 1] contains, for sufficient
large n, a interval I} contiguous to H, and we have

Slilf(t)ldtz by 2l:mes(I:;ﬂHk): s 2¢ mes ()

Sk e ke Qk—n
— 2" mes (I{) S1 L.
k=n+1 k

Hence f(x) is not summable on any interval and therefore f(x)
is not D-integrable on [0, 17.
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