433

98. On Kernels of Invariant Functional Spaces

By Masayuki Itô

Mathematical Institute, Nagoya University (Comm. by Kinjirô Kunugi, M.J.A., May 12, 1966)

Introduction. Deny introduced in [6] the notion of invariant functional spaces and he proved that to an invariant functional space \mathfrak{X} corresponds a convolution kernel κ in the following sense: each potential u_f in \mathfrak{X} generated by a bounded measurable function f with compact support is equal to the convolution $\kappa * f$. In this paper, we shall prove that the converse is valid. That is, for a positive measure κ of positive type, there exists an invariant functional space with kernel κ . Furthermore we shall give a necessary and sufficient condition for a positive measure κ of positive type to be the kernel of a special Dirichlet space.

1. Invariant functional spaces. Let X be a locally compact abelian group. We denote by dx the Haar measure of X. We define two kinds of functional spaces on X.

Definition 1. A weak invariant functional space $\mathfrak{X}=\mathfrak{X}(X)$ with respect to X and dx is a Hilbert space of real valued locally summable functions satisfying the following two conditions.

(1.1) For any compact subset K in X, there exists a positive constant A(K) such that

$$\left| \int_{K} u(x) dx \right| \leq A(K) ||u||$$

for any u in X.

(1.2) Let U_xu be a function obtained from u in $\mathfrak X$ by the translation $x\in X$. For any u in $\mathfrak X$ and any x in X, U_xu is in $\mathfrak X$ and $||U_xu||=||u||$.

Two functions which are equal $p.p.^{1}$ in X represent the same element in \mathfrak{X} . By the condition (1.1), for any compact subset K in X, there exists an element u_K in \mathfrak{X} such that

$$(u, u_{\scriptscriptstyle K}) = \int_{\scriptscriptstyle K} u(x) dx$$

for any u in \mathfrak{X} . Especially when $u_{\kappa}(x) \geq 0$ p.p. in X for any compact subset K, \mathfrak{X} is called a positive weak invariant functional space on X.

Definition 2.2 A weak invariant functional space X is called

¹⁾ A property is said to hold p.p. in a subset E in X if the property holds in E except a set which is locally of measure zero.

²⁾ Cf. [6], p. 12.

an invariant functional space on X if the following additional condition is satisfied.

(2.1) For any compact subset K in X, there exists a positive constant A(K) such that

$$\int_{K} |u(x)| dx \leq A(K) ||u||$$

for any u in X.

Let \mathfrak{X} be an invariant functional space on X. By the condition (2.1) in the above definition, for any bounded measurable function f with compact support, there exists an element u_f in \mathfrak{X} such that

$$(u, u_f) = \int u(x) f(x) dx$$

for any u in \mathfrak{X} . This element u_f is called the potential generated by $f.^{\mathfrak{F}}$. Especially when $u_f(x) \geq 0$ p.p. in X for any positive bounded measurable function f with compact support, \mathfrak{X} is said to be positive.

Similarly as Aronszajn and Smith [1], we obtain the following lemma.

Lemma 1. Let \mathfrak{X} be a positive weak invariant functional space on X. For each u in \mathfrak{X} , there exists an element \widetilde{u} in \mathfrak{X} such that $|u(x)| \leq \widetilde{u}(x) \ p.p.$ in X and $||u|| \geq ||\widetilde{u}||$.

Proof. Let P be a closed convex cone in \mathfrak{X} with vertex 0 generated by the set $\{u_{\kappa} \in \mathfrak{X}; K \text{ is compact in } X\}$. Let u' and u'' be the projections of u and -u to P, respectively. Put

$$\widetilde{u} = u' + u''$$
.

Then similarly as Aronszajn and Smith did, we see that \widetilde{u} satisfies all the required conditions.

By the above lemma, we obtain the following

Lemma 2. Let \mathfrak{X} be a positive weak invariant functional space on X. Then \mathfrak{X} is a positive invariant functional space on X.

Proof. It is sufficient to prove that the condition (2.1) is satisfied. By Lemma 1, for any u in \mathfrak{X} ,

$$\int_{K} |u(x)| dx \leq \int_{K} \widetilde{u}(x) dx \leq A(K) ||\widetilde{u}|| \leq A(K) ||u||$$

for any compact subset K in X. Hence the condition (2.1) is satisfied and the proof is completed.

Our first theorem concerns with the converse of Deny's theorem mentioned in the introduction.

Theorem 1. Let X be a locally compact abelian group. For any positive measure κ of positive type in X, there exists a positive invariant functional space with kernel κ .

Proof. By Lemma 2, it is sufficient to prove that for a positive measure κ of positive type in X, there exists a positive weak invariant

³⁾ Cf. [3], p. 209,

functional space \mathfrak{X} with kernel κ . Put

 $\mathfrak{X}' = \{\kappa * f; f \text{ is a bounded measurable function with compact support}\}.$ Then \mathfrak{X}' is a pre-Hilbert space with norm $||u_f||^2 = \kappa * f * \check{f}(0)$, where $u_f = \kappa * f$ and $\check{f}(x) = f(-x)$. And we have

$$\left| \int_{K} u_f(x) dx \right| = \left| (u_f, u_{e_K}) \right| \le ||u_{e_K}|| \cdot ||u_f||$$

for any compact subset K in X, where $c_K(x)$ is the characteristic function of K. By the above inequality, each fundamental sequence (u_{f_n}) in \mathfrak{X}' is fundamental in the weak topology in $L^1(K)$ for any compact subset K in X. Since $L^1(K)$ is weakly complete, there exists a function u defined p.p. in X such that (u_{f_n}) converges weakly to u in $L^1(K)$ for any compact subset K in X. Furthermore we have

$$\left| \int_{\mathbb{R}} u(x) dx \right| \leq ||u_{\mathfrak{e}_{K}}|| \lim_{n \to \infty} ||u_{f_{n}}||.$$

Let us define the norm of u by

$$||u||=\lim_{n\to\infty}||u_{f_n}||.$$

Then the completion \mathfrak{X} of \mathfrak{X}' is a Hilbert space of locally summable functions and satisfies the condition (1.1) in Definition 1. We shall prove that \mathfrak{X} satisfies the condition (1.2). For any x in X,

$$U_x u_f(y) = u_f(y-x) = \int f(y-x-z) d\kappa(z) = u_{U_x f}$$

for any finite continuous function f with compact support. Hence for any u in \mathfrak{X} and any x in X,

$$U_x u \in \mathfrak{X}$$
 and $||U_x u|| = ||u||$.

Thus the condition (1.2) is satisfied and the proof is completed.

2. Special Dirichlet spaces. In this section, we shall consider the kernel of a special Dirichlet space. Choquet and Deny [4] showed that a positive measure κ of positive type is the kernel of a special Dirichlet space D on a locally compact abelian group X if and only if κ is "le noyaux associé". We give the other characterization for κ to be the kernel of a special Dirichlet space on X.

Theorem 2. Let X be a locally compact abelian group. A positive measure κ of positive type in X is the kernel of a special Dirichlet space D on X if and only if κ satisfies the following condition (*).

(*). There exists a base of compact neighborhoods $\mathfrak U$ of 0 such that for any v in $\mathfrak U$, there exists a positive measure σ_v satisfying that

⁴⁾ Cf. [8], p. 121.

⁵⁾ Cf. [3], p. 215.

⁶⁾ Cf. [4], p. 4261.

$$\kappa \geq \kappa * \sigma_v \quad in \ X,$$

(2)
$$\kappa = \kappa * \sigma_v \quad in \quad Cv,$$

(3)
$$\int \!\! d\sigma_v \! \leq \! 1.$$

Proof. The "only if" part follows from the existence of balayaged measures of the unit measure ε at O^{7} . We shall prove the converse. For any v in \mathfrak{U} , put

$$\eta_v = \kappa * (\varepsilon - \sigma_v).$$

Then κ being symmetric,

$$\eta_{v_1} * (\varepsilon - \check{\sigma}_{v_2}) = \check{\eta}_{v_2} * (\varepsilon - \sigma_{v_1})$$

for any couple of v_1 and v_2 in \mathfrak{U} , where the symbol \vee is the same as in the proof of Theorem 1. Hence

$$\widehat{\eta}_{v_1}(\widehat{x})(1-\overline{\widehat{\sigma}_{v_2}}(\widehat{x})) = \overline{\widehat{\eta}_{v_2}}(\widehat{x})(1-\widehat{\sigma}_{v_1}(\widehat{x}))$$

in \hat{X} , where the symbol \wedge over a measure represents the Fourier transform and \hat{X} is the dual group of X. Put

$$\lambda(\widehat{x}) = \frac{1 - \widehat{\sigma}_{v_1}(\widehat{x})}{\widehat{\gamma}_{v_1}(\widehat{x})} = \frac{1 - \overline{\widehat{\sigma}_{v_2}}(\widehat{x})}{\widehat{\gamma}_{v_2}(\widehat{x})}, \quad (i)$$

when $\hat{\eta}_{v_1}(\hat{x})$ and $\hat{\eta}_{v_2}(\hat{x})$ don't vanish. Then $\lambda(\hat{x})$ is real valued. For any v in \mathfrak{U} , $\eta_v(\hat{O}) \neq 0$, because $\eta_v \neq 0$. Put

$$\eta_v' = \eta_v / \int d\eta_v$$
.

Then η'_v converges vaguely to ε and the support of η'_v tends to $\{O\}$ as v tends to $\{O\}$. That is, $\widehat{\gamma}_v(\widehat{x})/\widehat{\gamma}_v(\widehat{O})$ converges uniformly to 1 in the wide sense. Therefore $\lambda(\widehat{x})$ is defined everywhere in \widehat{X} and

$$\lambda(\hat{x}) = \lim_{v \to \{0\}} \frac{1 - \hat{\sigma}_v(\hat{x})}{\hat{\eta}_v(\hat{O})}.$$

Hence $\lambda(\hat{x})$ is negative definite function in \hat{X} , because the total mass of σ_v is less than or equal to 1 for any v in \mathfrak{U} . By (i), $\hat{\kappa}$ is a function defined p.p. in \hat{X} and

$$\lambda(\hat{x})\hat{\kappa}(\hat{x}) = 1$$

p.p. in \hat{X} , because $\hat{\sigma}_v(\hat{x}) \neq 1$ p.p. in \hat{X} . That is, $\lambda(\hat{x})^{-1}$ is locally summable. Consequently by Beurling and Deny's theorem, $^{9)}$ there exists a special Dirichlet space with kernel κ . This completes the proof.

Remark. If κ is "le noyaux associé", it is obvious that κ satisfies the condition (*) in Theorem 2.

⁷⁾ Cf. [7], Lemma 10.

⁸⁾ Cf. [5], pp. 9-11.

⁹⁾ Cf. [3], p. 215 and [5], pp. 12-13.

References

- [1] N. Aronszajn and K. T. Smith: Characterization of positive reproducing kernels. Applications to Green's functions. Amer. Jour. Math., 79,611-622 (1957).
- [2] A. Beurling and J. Deny: Espaces de Dirichlet I. Le case élémentaire. Acta Math., 99, 103-124 (1958).
- [3] ---: Dirichlet spaces. Proc. Nat. Acad. U.S.A., 45, 208-215 (1959).
- [4] G. Choquet and J. Deny: Aspects linéaires de la théorie du potentiel. Noyaux de composition satisfaisant au principe du balayage sur tout ouvert. C. R. Acad. Sc. Paris, 243, 4260-4261 (1960).
- [5] J. Deny: Sur les espaces de Dirichlet. Sémin. théorie du potentiel, Paris (1957).
- [6] —: Principe complet du maximum et contractions. Colloque International du C. N. R. S., Paris (1964).
- [7] M. Itô: Characterizations of supports of balayaged measures (to appear).
- [8] K. Yosida: Functional Analysis. Springer-verlag, Berlin (1965).