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152. The Lattice of Congruences of Locally
Cyclic Semigroups

By Takayuki TAMURA and Wallace ETTERBEEK
University of California, Davis, California

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1966)

In 2 Dean and Oehmke proved Theorem 1. Using Theorem 2
proved by Tamura and Levin 4 we will give another proof for
Theorem 1.

Theorem 1. The la$$ice of congruences on a locally cyclic
semigvoup is a distributive laice.

Theorem 2. Let S be a locally cyclic semigroup, $hen S-. JS
where S_S+ and S is a cyclic semigroup.

Let C be a cyclic semigroup. Denote C by C-(n, m) where
generates C and n, m are non-negative integers or nm-oo. C is
finite if and only if n, m are finite. See p. 19-20 1.

Any congruence p on a cyclic semigroup C is determined uniquely
by its induced homomorphic image C’ a cyclic semigroup. We denote
p-p(n’, m’) where C’-(n’, m’) and

(1) apb if and only if ta--- b a b
m’ (a-- b) a >_n’, b >_n’.

Proposition 1. Let C---(n, m) be a cyclic semigroup p-p(n, m)
is a congruence on C if and only if n_n, m

Proposition 2. Let S, S. be cyclic semigroups such that
SS. and 1 generates S., k generates S. p-p(n, m)and
p.(n., m:) are congruences on S and S respectively with p-p. ]S
if and only if n._n and n-r_n-i where n=-r(modk), lgr_k,
and m-lcm (k, m.).

Definition 1. Let a, p be congurences on a groupoid G. Then
aVp is the smallest congruence containing a and p and a/p is the
largest congruence contained in a and p.

Since the identity relation is contained in all congruences and
the universal relation contains all congruences and intersection
preserves congruences for any congruences, a, p on a groupoid G
both aV p and aA p exist.

In [5 Tamura proved the following.
Proposition 3. Let C be a cyclic semigroup; let a-a(n, m),

p-p(n., m) be congruences on C then
(i) aV p-(min (n, n.), gcd (m, m))
(ii) aA p-(max (n, n.), lcm (m, m.)).
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As a consequence of Proposition 3 we have:
Proposition 4. Let a, p, be congruences on a cyclic semi-

group C. Then 6A (pk)=-((A p) / (aA ).
Definition 2. Let S be a locally cyclic semigroup and a a

congruence on S. Then a-alS where S-[2S and S is a cyclic

semigroup.
Since the representation of S is not unique, a depends upon

the
Proposition 5. Let S, a be as defined above. Then

)
(ii)
(iii)
(iv)

i=l

By [3 we have the following two propositions.
Proposition 6. Let a, p be congruences on a groupoid G.

Then aVp--(aUp)T where T--UT, ()T-6U6, T:--(()T)T-,
and "U" is the set union. (See [3].)

Proposition 7. LetG G for some groupoid G, and a, b e G.
Then a() Tb if and only if there exists x, ..., x e G such that
a-xx, xx, ..., x_x-b.

Proposition 8. Let S be a locally cyclic semigroup with

congruences a, and let S-US, S a cyclic semigroup. Then
i--1

(i) aVp=(aVp)
(ii) aAp--(aAp).
We will prove only (i) since the proof of (ii)is an obvious result

of the definition of "A".
Clearly aVp_(aVp); therefore assume a, be S and a(aVp)b

and a:/: b. Since aVp is symmetric without loss of generality assume
a b. By Proposition 6 a(a V p) Tb so by Proposition 7 there exists
x, ..., x such that a-x(aVp)x,, ..., x_(aVp)x-b with xeS,
l<_j<_n. Let i,=max[{i}U{i}. We have x, ..., x. eS, since
S_S, and S_S, l<_j<_n, and x(aVp)x+ implies xa,x+ or
xp,x+. Let a,-a,(,, h,) and p,-p,(n,, m,). Using (1)we
have ,lx.-x+ or m,]x.-x+ so gcd(h,, m,)lx.-x+ giving us

(2) gcd (h,, m,)la--b since a-b=,(x.-x+).
Now since a, be S, k la-b where k generates S as a subsemi-

group of S,. Therefore by (2) lcm(k, gcd(h,, m,))la--b. But
lcm (k, gcd (h,, m,))-gcd (lcm (k, h,), lcm (k, m,)) =gcd (, m) where
a=(, h) and p-(n, m) by Proposition 2. This gives
( 3 gcd (, m)la.-b.
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By Proposition 2 and (1) either -__.-l<a or
n--r<_n.--la since aCb. Now k l--, k ln--r, and k la so

a or n_<a since 1<__ <_ k and 1<_ r <: k therefore
( 4 rain (, n) <: a< b.

From Proposition 3, aVp-(min (, n), gcd (, m)) so (3) and
(4) give us
5 a(a V p)b.

Therefore (aVp)_aVp which gives
aVp-(aVp).

Now using Theorem 2 and Propositions 4, 5, and 8 we will give
another proof for Theorem 1.

Theorem 1. Let S be a locally cyclic semigroup and the
lattice of congruences on S. Then is a distributive lattice.

Let a, p, e. By Theorem 2 and Proposition 5, S--US,
S_S+, S a cyclic semigroup l<_i<c and a, p are all well
defined congruences with respect to {S}< for 1___i<

Therefore aA (pV)- U [aA (pV)-- @ [aA (pV)
i=1

by Prop. 5 by Prop. 8

U [aA(pV)]-- U [(aAp)V(aA)]
i=1 =1

by Prop. 8 by Prop. 4

U [(aA p) V (aA)] U [’(a A p) V (aA)]
i--1 =1

by Prop. 8 by Prop. 8
=(aAp)V(aAS)
by Prop. 5.
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