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1. Introduction. §1.1. Definition.® Let 1=2(w) be con-
tinuwous, differentiable and monotone increasing in (0, o0), and let

it tend to infinity as w—oo. For a given series > a,, put
1
Cr(w)= 21 {H(w)—am)a,  (r=0).
Then the series :V_.‘an is called to be summable |R, 2, r| (r=0), if
1

for a positive number A,
C.(w) oo
d[ )y ]' <

)
For r>0, we have

d [ Cuw) T__72(w) »
d’wL{Z(w)}’“ - (A(w)fr = E{Z(w) An)A(n)a,.

Hence ian is summable | R, 2, r| (r>0), if and only if
o[22 5 ) wy-ama, | dw < co.

§1.2. We suppose that f(t) is integrable in the Lebesgue sense
in the interval (—=, 7), and is periodic with period 27, so that

F)~3a+31 (a, cos nt+b, sin nt)=3a,+ 31 A,(L).
1 1
Then the allied series is

i (b, cos nt—a, sin nt) =i B,(t).
1 1

We write

(1) ¥(@)=3{fx+)—fz—1)},
_ 1 V%) g

(2) hit)= log (2x/t) J¢ S %

In my thesis [2], I have proved that, if t“‘xh(zfﬁ)<log—2t£)2 is integrable

in (0,w), then the allied series of the Fourier series of f(t) is

summable | R, log w, 2|. The object of the present paper is to prove
the following

Theorem. If the integral S”t“lldq,zrl(t)[ exists, then the allied
0

*) Mohanty [1].
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series of the Fourier series of f(t), at t=w, is summable | R, log w,
146, where 0<6<1.
2. Proof of the theorem. §2.1. We write

(3) glw, t)y= 3] log n(log ﬂ>6 sin nt,
n<w n
(4) h(w, t)= 3 n* log fn(logﬂ)8 sin 1|
n<w n 2

For the proof of the theorem we require the following lemmas:
Lemma 1. g(w, t)=0(w log w).
Proof. By (3), we write
| g(w, £)|< 3 log n(logﬂ)sz ST+ S =P+Q.
n<w n n<wll (1+8) wl/ (1+8) <n<w
By the second mean value theorem, we have

wl/ 1+
P< S log u(log %)%lu—l— O(log w(log w)?)
< log w(log w) w" ¥ + O((log w)*+%) = O(w"*+¥(log w)'+?),
w 8
RL S log u(logf’z) du+O((log w)**?)
u

wl/(1+8)

w

< log wS (log 3"—>8du+ O((log w)*%)=0(w log w).
wll(148) u

Thus it follows that g(w, t)=0(w log w).
Lemma 2. g(w, t)=0("'(log w)'*?).
Proof. By Abel’s lemma, we have

g(w, t)= Slog ')@(Iogyi)a sin nt
n<w n
A

w)? —54—1
<7%<Ew~1 A(log fn(logjn«) >1 +O(w=%" log w)
<é{ }+ O(t-'w~* log w)=O(t-*(log w)"+?).
t Lacwll0+8) w1 (+8<n<w—1

Lemma 3. g(w, t)=0(t"*(log w)®).
Proof. By twice use of Abel’s lemma, we get

5
g(w,t)= > log %(10g£> sin nt
n<W n

= A”(log n(log %>8> Z:} D)+ 0@t2w*log w)+ Ot~ 'w—log w),

n<wW—2

Wherej:ﬁv(t) is the »-th conjugate Dirichlet kernel, and hence
A4 2 w\? l 2,08
(5) lg(w, ?) | < > 4 (log n(log;> ) +O0(t~*w=* log w)
_A

= }—I— O(t~*w—? log w)

t* {n<ew1/(1+‘s) ewl/(1+8)<n<ed~lw  eS—lw<n<w—2

= tAZ(P-l— Q+ R)+O0@t*w? log w).
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We have

(6) P=n<m1/(1+s> A2<log n(log %)6) t =0((log w)?),

(7 Q= A2<log n(log EY) \ = 0w+ (log w)*),
ewll (14+8) <n<ed—1y n

(8) R =88_1w§<w4 A“(log’ n(log%Y) 1 =0(w™"log w).

Hence the desired result follows from (5), (6), (7), and (8).
Lemma 4. A(w, t)=0((log w)**%),
Proof. From (4) we get

[A(w, t)|< ST log n(logiv—>8 < wa*l log x(log ﬂ)adx—k O(w~* log w)
n<w n 1 X

<log wgf(log%fx“ldx +0(wtlog w)=0((log w)**+?).

Lemma 5. A(w, t)=0("*(log w)®).
Proof. By Abel’s lemma, we have

h(w, )= log 7 (Iog%)ssinzlg—

n<w n
_ log n W\ & .o, vt
= 3 4(E"(1og ) ) Srsin L
log [w] (10w V\& . vt
-I—A( rwl \log F] ))g}sm 5
Since
}n'_l‘ sin* YL — é sin L é sin(p+3)t,
v=1 2 v=1 2 =1
we have
5 gi 2_%' <4
Z}l sin 3 e
Thus
| h(w, t) | <é2 = A<n“1 log n(logﬂ>s)1 +O(t2w—*"% log w).
t? n<w—1 n
We have
= A(n*l log n(log—@)s)\ =31+ 31 =0((log w)®) +O(w~*% log w).
a<w—1 n n<e esn<w—1

Hence the desired result follows,

§2.2. We shall now prove the theorem. By integrating by
parts twice, we get

(9) B,,(w):-TZL_—S:qy(t) sin nt dt

= ES,t‘a,h(t) log 2% (¢ sin nt)dt
T Jo t
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=— —Z—S”d«;q(t)[t log —25 sin nt—n~! cos nt+ n*l]
S dqpl(t)[t log 22 sin nt +2n~! sin® ﬂzi] =U,+V,.

The series Eun is summable | R, logw 1+4] if
1

(= A+0)dw

L= Se w(log w)*+? glog n(log )

Substituting for u, from (9), we have by (8)

2(1+3) dw
(10) |y ¢ 1og B Y O g, ).

<0,

Since S t7' | dvyy(t) | is finite, it is sufficient to show that
0
= Se ﬁ%}w | g(w, t)| =O(1/t2 longﬂ) for 0<t<m.
Let
o (F(oeZE)  pemre w
J1=S :S +§ ‘|“S = 11+J12+J1s'

e %(Iog%’_‘) e2r/t
By Lemma 1, we have
(o)

e[ e )-ofe (o)),

By Lemma 2, we have

J12=0(t—1§;'(';%) “E%&?> ~0(t10g 7).

By Lemma 3, we have

J13_0< S L) o@t-).

arit w(log w)?
Hence we get J1=O<t‘1 log—-t—> = (t‘z/log 27”)

It remains to prove that the series i v, is summable | R, log w,
1

1+5|. The series S)v, is summable | R, log w, 146 if
1

= (148)dw
Se w(log w)*+? n<2 log n(log >

Subtituting for v, from (9), we have, by (4),
2(1+3) dw ;
HOEN 14| |] gl 1 h, B).

Since S"t—l |dy(t)| is finite, it is enough to show that

0
Jo= |7 B | B, 1) |=0().

o w(log w)+
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Let
el
By Lemma 4, we have

e

By Lemma 5, we have
_ _of dw At
To=0( —tog ) =0
Hence we get J,=O0(t~*). Thus the proof of the theorem is completed.
The author has great pleasure in taking this opportunity of
expressing his warmest thanks to Prof. S. Izumi for his valuable
suggestions and guidance,
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