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(Comm. by Kinjir6 KUNUGI, M.J.A., Dec. 12, 1966)

A K-N axiom system of propositional calculus is given by
J. B. Rosser (2). His axiom system of classical propositional calculus
is written in the form of

a) CpKpp,

b) CKpgp,

¢) CCpqCNKqrNKrp,
where functors K, N, C denote conjunction, negation, and impli-
cation respectively.

As well known, we have Cpq=NKpNq. Therefore Rosser’s
axiom system is denoted by two functors K, N as follows:

a’) NKpNKpp,

b") NKKpqNp,

¢y NKNKpNgqNNKNKqrNNKrp.

On the other hand, B. Sobocinski obtained two new axiom
systems which is equivalent to Rosser’s system (see B. Sobocinski
[37, [4]). C. A. Meredith gave an axiom system (see C. A. Meredith
and A. N, Prior [1]).

In the K-N propositional calculus, there are two rules of
procedure:

1) One of them is the rule of substitution commonly used in
the propositional calculus.

2) The other is the rule of detachment as follows. If NKaNp
and « are theses, then B is also a thesis.

From Rosser’s system or KN-system, we can define an algebraic
gystem as follows: Let a be an abstract algebra consisting of
0,p,q,7,+--- with a binary operation x and a unary operation ~
satisfying the following conditions:

1) ~(@*p)xp=0,

2) ~px(gxp)=0,

3) ~~(~~@xr)r~(r*q))x~(~q*xp)=0,

4) Let a, 8 be expressions in X, then ~~Bx~a=0 and a=0
imply 8=0.

Then X is called KN-algebra. The condition 4) corresponds to
the rule of detachment.

First of all, we shall prove some general theorems. The Greek
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letters denote expressions in X.
A) ~axB=0 implies ~~(B*x7)*~(v*a)=0.
Proof. In 3), put p=pB,q=a, r=7v, then ~~(~~(Bx7)*x~
(vxa))x~(~axB)=0. By 4), we have ~~(B*7)x~(vxa)=0.
Then we have the following
B) ~axB=0,vyxa=0 imply Bxv=0.
C) ~axB=0, ~vyxa=0 imply Bx~v=0.
In A), put a=(p*p), B=p, v=~p, then ~(p*p)*xp=0 implies
~~(@x~p)x~(~p*(p*p))=0.
By 2), we have
5) px~p=0.
In 3), put p=~~¢q, r=~7r, then
~ e~~~ (g r)x (~ () x ~(~ g~ ~q)=0.
By 5), ~g*~~q=0, hence
6) ~~(~~gx~r)x~(~r*q)=0.
In 3), put p=~~q, then by 5)
~~(~~gxr)x~(r+xq)=0.
This expression implies
D) If axB=0, then ~~Bxa=0, and ~~ax~~FL=0,
5) and 6) imply
N ~~~pxp=0,
Let ~~ax~B=0, put p=~pB,¢=~a, r=a in 3), then
~~(~Bxa)k~(ax~a)=0,
and we have ~8xa=0. Hence
E) ~~ax~B=0 implies ~Bxa=0.
Let ~B+xa=0, put p=a,q¢=8, r=v in 3), then we have
~~(axy)x~(7*%6)=0.
By E), then ~(v*B8)x(axv)=0.
F) ~Bxa=0 implies ~(v*B)*(axv)=0.
Suppose that ~axS8=0, ~yx6=0, by F), we have
~(0*xa)x(B*x0)=0,
~(ax7)x(0xa)=0,
Then by C), (8x0)*x~(axv)=0. Hence
G) ~axB=0, ~vxd=0 imply (B%0)*~(axv)=0.
In F), if we put a=~~p, B=p, vy=7r, then by 5),
8) ~(r*p)x(~~pxr)=0.
For any expression «, by 7), we have ~~~ ~ax~a=0, hence
H) a=0 implies ~~a=0.
The following propositions are fundamental for our discussion.
I) ~Bxa=0, ~v%B8=0, ~6xy=0 imply ~0xa=0.
Proof. By H) and ~v*8=0, we have ~~(~vx8)=0. On the
other hand ~dxvy=0 and 6) imply ~~vy%x~8=0. From this and
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~Bxa=0, we have
(~o*xa)k~(~v%xB)=0

By G). By D), we have
~ o (~ORA) K~~~ (~yxB)=0,

Then, by ~v*x8=0, and H), we have ~~(~v%8)=0, and hence

from 4), ~dxa=0, Therefore we complete the proof.

9) ~pxp=0,
Proof. The idea of the proof is due to B. J. Rosser ([2], p. 64).

In 1), put p=~~p,

~(~~pr~~p) ke~ ~p=0,

In 8), pur r=~~p, r=p, then we have
~(~~pxp)x(~~pr~~p)=0,
~(@*p)x(~~pxp)=0

respectively. Hence by I), we have

(1) ~(p*p)x~~p=0

From 2), we have
(2) ~px(p*xp)=0.
1), (2), and C) imply
~~pk~p=0,
Hence by E), we have ~p*p=0, which completes the proof.
~pxp=0 and F) imply
10) ~(rxp)x(p*xr)=0.
In 9), put 6=7, then
J) ~Bxa=0, ~vxB=0 imply ~vxa=0.
From 10) and 2), we have

(3) ~(D*q)*(q*p)=0,

(4) ~gx(p*q)=0

respectively. (3), (4), and J) imply

11) ~gx*(g*p)=0.
K) ~Bxa=0, ~0xv=0 imply ~(0xB)*(v+a)=0.
Proof. In 3), put p=gq, then

(5) ~ o~ (@x 7))k~ (r*p)=0.
On the other hand, ~8*xa=0, ~6xv=0, and G) imply
(6) (v*a)x~(0xB)=0.

Put r=vxa, p=~(0*8) in (5), then
~ e~ (~ 0Bk (YRa)) k~((vx )k~ (0%B))=0.
By (6) and 4), we have
~(0*B)*(vxa)=0,

which completes the proof.

Next we shall prove a fundamental proposition.

12) ~(@* ~~q)*(pxq)=0.

Proof. By 7),9), we have ~~ ~qgxq=0, ~p*xp=0 respectively.
Applying K), then
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~(px~~q)x(p*q)=0.

13) ~(~gxp)*x(~(rx@)x(px7))=0.

Proof. From 3) and E), we have
13) ~(~qxp)x(~~(@*7)x~(rxq))=0.
By 10), we have
(14) ~(~ e~ ()~ (T Q) (~(r* @)k~ ~(p*x7))=0.
Further, by 12), we have
15) ~(~(r®q)x~ ~(Dx7))*(~(r*q)x(px1))=0.
Hence, by (13), (14), (15), and I), we have

~(~(g*p))*(~(r*q)*(px7))=0,

which completes the proof.

Among the propositions proved above, the propositions 1), 6), 11),
and 13) form an axiom system by B. Sobocifski [4]. The proof of
the converse is given in [4].
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