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1. Introduction. Let {p} be a given sequence of positive

numbers and let P-,p. Given a series a with its partial
k--0 0

sum s, if
1
p o= P-kSk"---8 as ,

the series a is said to be summable (N, p) to s. A regularity
0

condition of the summability (N, p) is
p,/P,O as n.

(See Hardy 1, Theorem 16.) The summability (N, 1/(n+1)) is
known as the harmonic summability. Concerning this summability,
Iyengar 2 and Shaney 3 have defined the harmonic summability
of higher order, independently. But, their definitions are different.
The purpose of this paper is to investigate the relations between
these methods of summation. Throughout this paper, p and p’
denote positive integers. Iyengar’s definition is as follows. Let
a,, define by , log

:0 1-
Then the summability (N, p) with p=, defines the summability
(H, p).* Of course, the summability (H, 1)is the ordinary harmonic
summability. If we use Lemma 4 stated below, we see that the
regularity condition stated above is satisfied for the summability
(H, p). Thus the summability (H, p) is regular. On the other,
Shaney’s definition is as follows. Let

and, for p2,

8,,- (+) H lo (+)
k=l

where log =log, log =log(log_ ),, and 2 is the least
ositive integer sueh that log,_ 2 > 0. hen the summability (N, p)
with =, defines the summability (H’, ). It should be noted
ha 8haney has used

*) Iyengar [2 has used the notation (N, p) in place of the notation (H, p)
and later Varshney 4 has used this one.
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, n-4-1) 1] log (n/ 1

in place of above /,, but /, has no meaning when p>=2. The
summability (H’, p) is also regular.

Given two methods of summation P and Q, we write PQ if
a series summable (P) is also summable (Q) and write P=[}Q if there
exists a series such that the series is summable (P) but not sum-
mable (Q). The results to be proved are as follows.

Theorem 1. (H, p)(H, p+ 1)for a positive integer p.
Theorem 2. (H, p/l)=l(H p) for a pasitive integer p.
Theorem 3. (H’,p)(H’, 1)-(H, 1) for a positive integer p>2.
Theorem 4. (H’, p)=[(H’, p’) for positive integers p and p’,

pp’.
From these theorems we have the following two theorems.
Theorem 5. (H’, p)(H, p’) for positive integers p and p’.
Theorem 6. (H, p)=[(H’, p’) for positive integers p and p’,

p’>=2.. 2. Preliminary Lemmas. Lemma 1. If (N, p) and (N, q)
are regular, then, in order that (N, p)@(N, q), it is necessary and

sufficient that

(2.1) , k P_<AQ,

where k is defined by, kx=-- , qx px-, Qx Px,
0 --0 ,0

and A is a constant independent on n, and that
k,/Q--O as n--c.

This is a theorem due to M. Riesz. (See Hardy 1, Theorem 19.)
Lemma 2. If (N, p) and (N, q) are regular, and if there

does not exist a constant A’ such that
P<=A’Q, n- 1, 2, 3, ...,

then (N, p,)=i(Y, q).
Proof. If (N, p)(N, q), we have, from (2.1), a constant

A such that
P<AQ, n-l, 2, 3,

This contradictes our assumption.
Lemma :. If (i) (N, p) and (N, q) are regular, (ii) p satisfies

(2.2) p.>0, p,+/p>p/p_, n>0,
(iii) q>0 and (iv)

q/q_>=p/p_, n>no,
then (N, p)(N, q).

This is a theorem due to Hardy. (See Hardy 1, Theorem 23
and p. 91.)
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Lemma 4. Let p be a positive integer and let ,,p and ,,
be defined by

o,,,x" log

The we have

} (nd i- o’..x" .,x I.
1-x

(2.3) .,1(log n)p-,

(2.4) , ak,-- (log n)
k=0

and
(2.5) 7,= O(1/n(log n)+).

Proof. (2.5) is due to Iyengar [2, Lemma 1]. To prove (2.3),
if we use the relations

1P .]a,_ and a,-(2.6) ’- n+p =0 n+ 1
then (2.3) is easily proved by induction. The first relation of (2.6)
is obtained as follows. Since

d(log. 1 )’-
n=O k=O

we see, by termwise integration,

Thus we have (2.6). Concerning (2.4), since (log x)’-/x is monotone
decreasing on the interval Ix0, ),x0 being a constant, we have,
using (2.3),

d- )
=0 =0 k+ 1 x

which is the required result.. Proof of Theorems. .1. Proof o Theorem 1. We
set

1 1 q(x) a,,+x loglgl x ,=0 1 x
and

Thus

k(x)---q(x)- 1 log 1 _] _k,x.
p(x) x 1-x :o n+l :0

k- 1 >0 for all n.
n/l

Hence, by Lemma 1, we have
(H, p)(H, p/ i).

3.2. Proof of Theorem 2. Let us put
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p=o:,+ and q=v,.
Then, by Lemma 3,

P- p(log n)+ and Q- q(log n).
k=O k----O

Thus, by Lemma 2, we have
(H, p+ 1):I(H, p).

3.3. Proof of Theorem 3. Let us put

p,-/,, and q,_ 1
n/l

To prove the theorem, we have to verify that the conditions of
Lemma 3 are satisfied. Except the second condition of (2.2), the
other are trivially satisfied. Hence we shall prove the second con-
dition of (2.2). Since the function -log x is convex, we have

1 <
since the funetion -log. x is convex, we have

log
and so we have

Thus we have

1
log (n- 1 / 2) log (n+ 1 + 2)

1
log_l (n- 1 + 2) log_l (n+ 1/ 2)

p_p+>p, i.e., ,
which is the required result.

3.4. Proof of Theorem 4. Let us put
p=/3, and q=/,,.

Then we have

P p log n and Q- q, log, n.
k--O k=O

Since pp’, we see, using Lemma 2,
(H’, p):I(H’, p’).
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