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181. On Nuclear Spaces with Fundamental System
of Bounded Sets. I1

By Shunsuke FUNAKOSI
(Comm. by Kinjiré6 KUNUGI, M. J. A., Oct. 12, 1968)

A locally convex vector space with a countable fundamental
system of bounded sets has already been developed in several bibliog-
raphies. Barrelled spaces and quasi-barrelled spaces with a count-
able fundamental system of compact sets has been studied by J.
Dieudonné [2] and by M. Mahowald and G. Gould [7] respectively.

We considered, the open mapring and closed graph theorems on
a nuclear dualmetric space in the previous paper [4].

Let E be a normed space then E is a nuclear space if and only if
it is finite dimentional. It is also known that a normed space can
only be a Montel (i.e., barrelled and perfect) space if it is finite dimen-
sional. In this paper, we prove a nuclear dualmetric space which is
quasi-complete is Montel space, and using this result, we consider
analogous theorem to M. Mahowald and G. Gould [7], in nuclear
space.

For nuclear spaces and its related notion, see A. Pietsch [8] and
S. Funakosi [4]. Most of the definitions and notations of the locally
convex vector spaces are taken from N. Bourbaki [1] and T. Husain
[5].

Definition. Let E be a locally convex space and E’ its dual.

(1) If only all countable strong bounded subset of K’ are equi-
continuous, then E is called the o-quasi-barrelled.

(2) LetFE beaog-quasi-barrelled space, if there exists a countable
fundamental system of bounded subset in E, then E is called the dual-
metric space.

The following Lemma is well known.

Lemma 1. A metric or dualmetric locally convex vector space E
18 nuclear if and only if its dualnuclear.

The proof is given in A. Pietsch [8].

Proposition 1. Fach nuclear dualmetric space E is o quasi-
barrelled.

Proof. By Lemma 1, the strong dual E’* is nuclear, so an
arbitrary bounded subset of E’? is separable (see, the proof of Theorem
4, (a) in S. Funakosi [4]). Denote by B strong bounded subset of E’,
then BC {a,; a, € B}. On the other hand, since E' is dualmetric it is a



808 S. FUNAKoOSI [Vol. 44,

o-quasi-barrelled, so there exist a neighborhood U such that a, ¢ U° for
every n, where U° is a polar of U. Therefore an arbitrary strong
bounded subset of E’ is a equicontinuous. Hence E is a quasi-barrel-
led space.

Corollary 1. A nuclear dualmetric space is a Mackey space.

Proof. By proposition, nuclear dualmetric space is a quasi-
barrelled space. Moreover, quasi-barrelled space is a Mackey space
(cf. [5], p. 81). Therefore nuclear dualmetric space is a Mackey space.

We remark, clearly a dualmetric space is a (DF)-space in G. Kéthe
[6] or A. Grothendieck [3]. Therefore, we have the following Lemma
by G. Kothe [9, p. 405 (3), a)]. '

Lemma 2. A dualmetric space is complete if and only if it is
quasi-complete.

Proposition 2. A nuclear dualmetric space E which is quasi-
complete is a Montel space.

Proof. By Lemma 2, E is complete. Moreover E is barrelled
because E is complete and quasi-barrelled (cf. [1]). Since E is a
nuclear space, an arbitrary closed and bounded subset B is a closed
and precompact subset. Hence B is compact because E is complete.
Therefore E is a Montel space. Since a Montel space is reflexive, we
have the following.

Corollary. A nuclear dualmetric space E which is quasi-complete
s reflexive.

The following Lemma due to [7].

Lemma 3. FE s quasi-barrelled if and only if either of the fol-
lowing two equivalent conditions holds,

(a) The identity map from Ez onto E is almost open.

(b) E'’1is almost closed® in Ey and E=E,, where E denote the
associated bornological space (c¢f. [1, Ch. 3, § 2, Example 13]).

By using the above result, we have the following theorem. The
idea of its proof is essentially due to [7].

Theorem. If E is nuclear dualmetric space which is quasi-com-
plete, then E is the strong dual of Fréchet-Montel space.

Proof. By Lemma 2, E is complete dualmetric space. Without
loss of generality we can take a countable fundamental system of
bounded set which is formed by closed bounded set because every
bounded set is precompact in a nuclear space by Proposition 2 of S.
Funakosi [4]. Therefore E’*=E’*, where E’¢ (resp. E’*) denotes the
set E’ with the topology of uniform convergence over the bounded
(resp. compact) sets of E. First of all it will be shown that E’? (=E'%)

# We say that F is an almost closed subspace of E’ if U°NF’ is closed in
E’ for every neighborhood U of zero in E.
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is a Fréchet space. Clearly E’f is a metrizable space because E is a
dualmetric space. It is sufficient therefore to deal with Cauchy
sequence on E’*. Let {x,} be a such a Cauchy sequence, and z be its
limit in E*# (=E**), where E* denotes the algebraic dual of E. It is
easy to show that the restriction of the functional x onto a closed
bounded subset of E is continuous because a closed bounded subset is
a compact subset ; in particular, x takes any convergent sequence in E
into a convergent sequence of scalars. Therefore, « takes bounded
sets into bounded sets of scalars. Thus ze¢ E} (cf. [1. Ch. 8, §2,
Example 13]), and hence £"¢c £, where £’ denotes the completion of
the space E’. Since the set {x,}U{z} is compact in Es, its closed
convex hull H will also be compact in £’% (= E’*) and will therefore be
compact as a subset of E%, where E’° denotes the weak dual of E.
Since nuclear dualmetric space is a quasi-barrelled, HNE’ is closed
in E% by Lemma 3. Hence this implies that  must be in HNE'cE’
along with {x,}. Sequential completeness and therefore completeness
of E’* now follows. Moreover, since E is a Montel space E’ is a
Montel space (cf. [5. p. 32, Propopsition 17]). By Corollary of Propo-
gition 1, topologies in E=FE’* (=E'*) are identical with the Mackey
topology 7(F, E’). Next, we establish that E**=FE’#* (=FE). In fact,
the completeness of E’* (=FE’*) ensures that E'#*=FE'#° where E’°
denotes the set E’ with the topology of uniform convergence over
the compact convex sets of E, and since a compact convex set of
E'* (=FE'*) is compact in the coarser topology o(E’?, E), it follows that
E'#t <E'*,  On the other hand, if K is a compact convex set in the
weak topology ¢(E’, E) and is therefore an equicontinuous subset of
E’, and as such, it is compact in £’ (=E"*) (¢f. [1. Ch. 3, § 3, propo-
gition 5]). This establishes the inverse inequality E’#*>E’#*, so that
in fact E/**=FE'#* (=F). Finally E is the strong dual of the Fréchet-
Montel space E’?. The proof is as follows. The space E is a barrel-
led space because E is a complete dualmetric space. Since, however
E=FE'#*=F’"" is the Mackey dual of E’#, bounded subset of E’* are
relatively compact in the topology ¢(E’, E), and as demonstrated in
the proceding paragraph, such sets are relatively compact in E’¢. It
follows therefore that E=E"#*=FE'#'*, The proof is complete.

References

[1]1 N. Bourbaki: Espaces Vectoriels Topologiques. Harmann, Paris (1953).

[2] J. Dieudonné: Denumerability conditions in locally convex vector spaces.
Proc. Amer. Math. Soc., 8, 367-372 (1957).

[8]1 A. Grothendieck: Sur les espaces (F') et (DF). Summa Bras. Math., 3,
57-123 (1954).



810 S. FUNAKOSI [Vol. 44,

[4] S. Funakosi: On nuclear spaces with fundamental system of bounded sets.
I. Proc. Japan Acad., 44(5), 346-351 (1968).

[6] T. Husain: The open mapping and closed graph theorems in topological
vector spaces. Oxford Mathematical Monographs (1965).

[6] G. Kothe: Topologische Linear Riume. I. Springer-Verlag, Berlin (1960).

[7] M. Mahowald and G. Gould: Quasi-barrelled locally convex spaces. Proc.
Amer. Math. Soc., 2, 811-816 (1960).

[8] A. Pietsch: Nukleare Lokalkonvexe R#ume. Akademie-Verlog, Berlin
(1965).



