204. On the Product of M-Spaces. II

By Tadashi Ishii, Mitsuru Tsuda, and Shin-ichi Kunugi Utsunomiya University

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1968)

1. This is the continuation of our previous paper [1].*) The purpose of this paper is to prove the following theorems which are related to the product of M-spaces and to the countable product of the spaces belonging to \mathfrak{C} .

Theorem 1.1. If X belongs to \mathbb{C} , then the product $X \times Y$ is an M-space for any M-space Y.

Corollary 1.2. If X is an M-space which satisfies one of the following conditions, then the product $X \times Y$ is also an M-space for any M-space Y.

- (a) X satisfies the first axiom of countability.
- (b) X is locally compact.
- (c) X is paracompact.

Since an M-space X which satisfies one of conditions (a), (b), and (c) belongs to \mathbb{C} by [1, Theorem 2.2], this corollary is a direct consequence of Theorem 1.1.

Theorem 1.3. If X_n , $n=1, 2, \dots$, are the spaces belonging to \mathbb{C} , then the product $\prod_{n=1}^{\infty} X_n$ also belongs to \mathbb{C} .

Corollary 1.4. If X_n , $n=1, 2, \cdots$, are M-spaces each of which satisfies the first axiom of countability, then the product $\prod_{n=1}^{\infty} X_n$ is also an M-space satisfying the first axiom of countability.

If each space X_n satisfies the first axiom of countability, then the product $\prod_{n=1}^{\infty} X_n$ satisfies the first axiom of countability, too. Hence this corollary follows from Theorem 1.3 directly.

If each space X_n is a paracompact M-space, then the product $\prod\limits_{n=1}^{\infty} X_n$ is also a paracompact M-space (cf. K. Morita [3, Theorem 6.4]). However for locally compact M-spaces X_n , the product $\prod\limits_{n=1}^{\infty} X_n$ is not locally compact in general. For example, let X_n , $n=1,2,\cdots$, be the spaces of real numbers with the usual topology. Then the product $\prod\limits_{n=1}^{\infty} X_n$

^{*)} All spaces are assumed to be Hausdorff.

belongs to \mathbb{C} , while it is not locally compact (cf. [2, Theorem 19 in Chap. 5]).

2. Lemmas. Lemma 2.1. Let $\{\mathfrak{U}_i\}$ and $\{\mathfrak{B}_i\}$ be normal sequences of open coverings of the spaces X and Y, respectively. If we put $\mathfrak{W}_i = \{U \times V \mid U \in \mathfrak{U}_i, V \in \mathfrak{B}_i\}$ for each i, then $\{\mathfrak{W}_i\}$ is a normal sequence of open coverings of the product $X \times Y$.

Proof. Let $W = U \times V \in \mathfrak{B}_{i+1}$, where $U \in \mathfrak{U}_{i+1}$ and $V \in \mathfrak{B}_{i+1}$. Then $\operatorname{St}(W, \mathfrak{B}_{i+1}) = \operatorname{St}(U, \mathfrak{U}_{i+1}) \times \operatorname{St}(V, \mathfrak{B}_{i+1})$. Since $\operatorname{St}(U, \mathfrak{U}_{i+1}) \subset U'$ and $\operatorname{St}(V, \mathfrak{B}_{i+1}) \subset V'$ for some $U' \in \mathfrak{U}_i$ and for some $V' \in \mathfrak{B}_i$, we have $\operatorname{St}(W, \mathfrak{B}_{i+1}) \subset U' \times V' \in \mathfrak{B}_i$, which shows that $\{\mathfrak{B}_i\}$ is a normal sequence of open coverings of $X \times Y$.

Lemma 2.2. For each positive integer n, let $\{\mathfrak{U}(n, i) | i=1, 2, \cdots\}$ be a normal sequence of open coverings of a space X_n . If we put

$$\mathfrak{U}_i = \{U_1 \times \cdots \times U_i \times \prod_{n>i} X_n \mid U_j \in \mathfrak{U}(j, i), j=1, \cdots, i\},$$

then $\{\mathfrak{U}_i\}$ is a normal sequence of open coverings of the product $\prod\limits_{i=1}^{m} X_i$.

Proof. Let $V = U_1 \times \cdots \times U_{i+1} \times \prod_{n>i+1} X_n \in \mathfrak{U}_{i+1}$, where $U_j \in \mathfrak{U}(j,i+1)$, $j=1,\cdots,i+1$. Then we have

 $\operatorname{St}(V, \mathfrak{U}_{i+1}) = \operatorname{St}(U_1, \mathfrak{U}(1, i+1)) \times \cdots \times \operatorname{St}(U_{i+1}, \mathfrak{U}(i+1, i+1)) \times \prod_{n \leq i+1} X_n.$

Since $\operatorname{St}(U_j, \operatorname{\mathfrak{U}}(j, i+1)) \subset U'_j$ for some $U'_j \in \operatorname{\mathfrak{U}}(j, i)$, $\operatorname{St}(V, \operatorname{\mathfrak{U}}_{i+1})$ is contained in $U'_1 \times \cdots \times U'_i \times \prod_{n>i} X_n \in \operatorname{\mathfrak{U}}_i$. Hence $\operatorname{\mathfrak{U}}_{i+1}$ is a star refinement of $\operatorname{\mathfrak{U}}_i$ for each i. Thus we complete the proof.

Lemma 2.3. If X is a compact space, and if Y is a countably compact space, then the product $X \times Y$ is countably compact.

This lemma is due to J. Novák [4, Theorem 5].

3. Proof of Theorem 1.1. Let $\{\mathfrak{U}_i\}$ be a normal sequence of open coverings of X satisfying Condition (*), and let $\{\mathfrak{B}_i\}$ be a normal sequence of open coverings of Y satisfying Condition (M_0) . If we put $\mathfrak{B}_i = \{U \times V \mid U \in \mathfrak{U}_i, V \in \mathfrak{B}_i\}$ for each i, then by Lemma 2.1 $\{\mathfrak{B}_i\}$ is a normal sequence of open coverings of $X \times Y$. Let $\{z_i\}$ be a sequence of points of $X \times Y$ such that $z_i \in \operatorname{St}(z_0, \mathfrak{B}_i)$ for each i and for some fixed point z_0 of $X \times Y$. Let us put $z_i = (x_i, y_i) \in X \times Y$ and $z_0 = (x_0, y_0) \in X \times Y$. Since $x_i \in \operatorname{St}(x_0, \mathfrak{U}_i)$ for each i, there exists a subsequence $\{x_{i(n)}\}$ of $\{x_i\}$ which has the compact closure in X. On the other hand, since $y_i \in \operatorname{St}(y_0, \mathfrak{B}_i)$ for each i, any subsequence of $\{y_i\}$ has an accumulation point in $\cap \operatorname{St}(y_0, \mathfrak{B}_i)$ and nowhere else, which shows that the closure of $\{y_i\}$ in Y is countably compact. Hence the closure of $\{y_{i(n)}\}$ in Y is also countably compact. Consequently, by Lemma 2.3 $\{x_{i(n)}\} \times \{y_{i(n)}\}$ is countably compact. This shows that $\{z_{i(n)}\}$ has an accumulation point in $X \times Y$, and hence $X \times Y$ is an M-space. Thus we complete the proof.

Proof of Theorem 1.3. Let us put $X = \prod_{n=1}^{\infty} X_n$, and let $\{\mathfrak{U}(n,i) | i = 1, 2, \cdots\}$ be a normal sequence of open coverings of X_n satisfying Condition (*). Then, as is shown in Lemma 2.2, we can construct a normal sequence $\{\mathfrak{U}_i\}$ of open coverings of X. Now let $\{x(i) | i = 1, 2, \cdots\}$ be a sequence of points of X such that $x(i) \in \operatorname{St}(x, \mathfrak{U}_i)$ for each i and for some fixed point x of X. We denote the k-th coordinate of a point x of X by x_k . If we put

$$x(i) = (x_1(i), x_2(i), \dots, x_k(i), \dots), x_k(i) \in X_k,$$

then $\{x_1(i)|i=1,2,\cdots\}$ is a sequence of points of X_1 such that $x_1(i)\in \operatorname{St}(x_1,\operatorname{ll}(1,i))$. Hence by Condition (*) there exists a subsequence $\{x_1(n_{1i})|i=1,2,\cdots\}$ of $\{x_1(i)\}$ which has the compact closure in X_1 , where we may assume that $2\leq n_{1i}< n_{1,i+1}, i=1,2,\cdots$. Next we consider a sequence $\{x_2(n_{1i})|i=1,2,\cdots\}$ of points of X_2 . Since $x_2(n_{1i})\in \operatorname{St}(x_2,\operatorname{ll}(2,i))$ for each i, there exists a subsequence $\{x_2(n_{2i})|i=1,2,\cdots\}$ of $\{x_2(n_{1i})\}$ which has the compact closure in X_2 , where we may assume that $3\leq n_{2i}< n_{2,i+1}, i=1,2,\cdots$. By repeating these processes, we can select a subsequence $\{x_k(n_{ki})|i=1,2,\cdots\}$ of $\{x_k(n_{k-1,i})\}$ which has the compact closure in X_k for each $k\geq 2$, where we may assume that $k+1\leq n_{ki}< n_{k,i+1}, i=1,2,\cdots$. Now consider the subsequence $\{x(n_{kk})|k=1,2,\cdots\}$ of $\{x(i)|i=1,2,\cdots\}$. Then we can prove that the closure of $\{x(n_{kk})|k=1,2,\cdots\}$ in X is compact. In fact, if we put

 $K_1 = \{\overline{x_1(n_{1i})}\}, K_k = \{\overline{x_k(n_{ki})}\} \cup \{x_k(n_{1i}) \mid n_{1i} < n_{kk}\}, k=2, 3, \cdots,$

then $\{x(n_{kk}) | k=1, 2, \cdots\}$ is contained in a compact set $K = \prod_{k=1}^{\infty} K_k$. Since K is compact in X, the closure of $\{x(n_{kk}) | k=1, 2, \cdots\}$ in X is compact. This completes the proof.

References

- [1] T. Ishii, M. Tsuda, and S. Kunugi: On the product of M-spaces. I. Proc. Japan Acad., 44, 897-900 (1968).
- [2] J. L. Kelley: General Topology. Van Nostrand (1955).
- [3] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [4] J. Novák: On the cartesian product of two compact spaces. Fund. Math., 40, 106-112 (1953).