24. On R-convex Sets in a Topological R-space

By Ayako HIGASHISAKA

(Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1969)

§ 1. Introduction. In this paper we shall consider the Krein-Milman's Theorem and the applications on a topological \mathcal{R} -space which has not vector spacestructure. The notion of topological \mathcal{R} -spaces is introduced by E. Deák [1]-[5].

We shall first give the some definitions.

- (1.1) A system R of the ordered pair (G, F) consisting of the subsets of a nonempty set X is called a *Richtung* of X, if it satisfies the following conditions:
 - (R_1) $(\phi, \phi), (X, X) \in R.$
 - (R_2) For any $(G, F) \in R$, $G \subseteq F$ and for two different pairs (G_1, F_1) , $(G_2, F_2) \in R$, $F_1 \subseteq G_2$ or $F_2 \subseteq G_1$.
 - (R_3) Let $\mathcal{G}(R)$ be a family of the first part of all elements of R. $\cup \{G \mid G \in \mathcal{G}^*\} \in \mathcal{G}(R) \ (\mathcal{G}^* \subset \mathcal{G}(R), \ \mathcal{G}^* \neq \phi).$
 - (R_4) Let $\mathcal{F}(R)$ be a family of the second part of all elements of R. $\cap \{F \mid F \in \mathcal{F}^*\} \in \mathcal{F}(R) \ (\mathcal{F}^* \subset \mathcal{F}(R), \mathcal{F}^* \neq \phi).$
 - $(R_{5}) \cup \{F-G \mid (G, F) \in R\} = X.$
- (1.2) Let $\mathcal{R} = \{R_{\alpha} | R_{\alpha} : \text{Richtung, } \alpha \in A\}$. A \mathcal{R} -space is an ordered pair (X, \mathcal{R}) such that the following separation axiom is satisfied.
 - (S.A) Any set of the type, $\bigcap \{F_{\alpha} G_{\alpha} | (G_{\alpha}, F_{\alpha}) \in R, \alpha \in A\}$ contains at most one element.
- (1.3) For a \mathcal{R} -space (X, \mathcal{R}) , the set G, X-F or F, X-G is called the open or closed \mathcal{R} -half spaces of X.
- (1.4) A \mathcal{R} -space (X, \mathcal{R}) is called a *topological* \mathcal{R} -space if we introduce the topology in X such that a family of all open \mathcal{R} -half spaces is a subbasis.
 - (1.5) For any Richtung R of X, it is clear that the relation: $(G_1, F_1) \prec (G_2, F_2) \Longleftrightarrow F_1 \subseteq G_2$ is a linear order of R.

For any $G \in \mathcal{G}(R)$ or $F \in \mathcal{F}(R)$ is the first or second part of at most two different elements of R. G(R:F) or $\bar{G}(R:F)$ denotes the smaller or larger set $G \in \mathcal{G}(R)$ such that $(G,F) \in R$, and in the same way we can define F(R:G) and $\bar{F}(R:G)$ for any $G \in \mathcal{G}(R)$.

(1.6) For any nonempty set $E \subset X$ and $R \in \mathcal{R}$ of a \mathcal{R} -space (X, \mathcal{R}) , we give the following notations:

$$G_E(R) = \bigcup \{G \in \mathcal{G}(R) \mid G \cap E = \phi\},$$

 $F_E(R) = \bigcap \{F \in \mathcal{F}(R) \mid F \supseteq E\},$
 $G_x(R) = \bigcup \{G \in \mathcal{G}(R) \mid G \not\ni x\},$

$$F_x(R) = \bigcap \{ F \in \mathcal{F}(R) \mid F \ni x \},\ S_E(R) = F_E(R) - G(R : F_E(R)),\ T_E(R) = \overline{F}(R : G_E(R)) - G_E(R).$$

It follows from (R_5) that $(G_x(R), F_x(R)) \in R$ for each $x \in X$ and each $R \in \mathcal{R}$, and that $S_x(R) = T_x(R)$.

(1.7) Let (X, \mathcal{R}) be a \mathcal{R} -space and $R \in \mathcal{R}$. If $(G, F) \in R$ and $G \subsetneq F$, the set F - G is called a R-hyperplane. The set $S \subset X$ is a \mathcal{R} -hyperplane if it is a R-hyperplane for some $R \in \mathcal{R}$. A R-hyperplane S = F - G is an upper or lower R-supporting hyperplane of $E \subseteq X$, if $S \cap E \neq \phi$ and $E \subset F$ or $E \subset X - G$. If $E - S \neq \phi$, a R-supporting hyperplane S of E is called a proper R-supporting hyperplane of E.

It is clear that the set of E has an upper or lower R-supporting hyperplane if and only if $S_E(R) \cap E \neq \phi$ or $T_E(R) \cap E \neq \phi$, and then $S_E(R)$ or $T_E(R)$ is an upper or lower R-supporting hyperplane.

We can prove that if E is a compact set, there exist the upper and lower R-supporting hyperplanes of E for any $R \in \mathcal{R}$.

- (1.8) The strong \mathcal{R} -convex hull of $E \subseteq X$ is the intersection of all \mathcal{R} -halfspace containing E and we denote it by $k(\mathcal{R}:E)$. If $E = k(\mathcal{R}:E)$, E is a strong \mathcal{R} -convex set. By $a \cdot k(\mathcal{R}:E)$ we denote the closed strong \mathcal{R} -convex hull of $E \subseteq X$ defined by the intersection of all closed \mathcal{R} -halfspace containing E.
 - (1.9) The quasi \mathcal{R} -inner of the set $E \subseteq$ is the set
 - $Q(\mathcal{R}: E) = k(\mathcal{R}: E) \bigcup \{\text{all proper } \mathcal{R}\text{-supporting hyperplane}\}\$
 - §2. \mathcal{R} -extremal sets and \mathcal{R} -extremal points.

Let (X, \mathcal{R}) be a \mathcal{R} -space and $E \subseteq X$. A \mathcal{R} -extremal set of E is a subset $M \subseteq E$ such that $A \subseteq M$ whenever $A \subseteq k(\mathcal{R}: E)$, $2 \le \overline{A} < \bigstar_0$ and $M \cap Q(\mathcal{R}: A) \ne \phi$. If $M = \{x_0\}$, x_0 is called a \mathcal{R} -extremal point of E.

The following properties of $\mathcal R$ -extremal subsets of E can be easily verified.

- (2.1) Any union of \mathcal{R} -extremal subsets of a set E is a \mathcal{R} -extremal subset of E.
- (2.2) Any intersection of \mathcal{R} -extremal subsets of a set E is a \mathcal{R} -extremal subset of E.
- (2.3) If A is a \mathcal{R} -extremal subset of B and, B is a \mathcal{R} -extremal subset of C, then A is a \mathcal{R} -extremal subset of C.
- (2.4) If $A \subset B \subset C$ and if A is a \mathcal{R} -extremal subset of C, then A is a \mathcal{R} -extremal subset of B.
- (2.5) Let \mathcal{C} be a family of sets in a \mathcal{R} -space, and let $Y = \bigcap_{X \in \mathcal{C}} X$. If one of any two members of \mathcal{C} is a \mathcal{R} -extremal subset of the other, then Y is a \mathcal{R} -extremal subset of each $X \in \mathcal{C}$.
 - §3. The Krein-Milman's Theorem.

Theorem 1. A nonempty compact strong \mathcal{R} -convex subset E of

a topological \mathcal{R} -space has at least one \mathcal{R} -extremal point.

Proof. The set E is itself a \mathcal{R} -extremal subset of E. Let \mathcal{M} be the totality of compact \mathcal{R} -extremal subsets of E. Order \mathcal{M} by the set inclusion relation. It is easy to see that if \mathcal{M}_1 is a linearly ordered subfamily of \mathcal{M} , there exists a compact \mathcal{R} -extremal subset of E which is a lower bound for the subfamily \mathcal{M}_1 .

Thus, by Zorn's lemma, \mathcal{M} contains a minimal element M_0 . Suppose that $\bar{M}_0 \geq 2$. Then there exist $R \in \mathcal{R}$ such that $\bar{F}(R:G_{M_0}(R)) \cap M_0 \subseteq M_0$. Since M_0 is the compact set, $M_1 = \{\bar{F}(R:G_{M_0}(R)) - G_{M_0}(R)\} \cap M_0 \neq \phi$.

On the other hand, suppose that A is a subset of $k(\mathcal{R}:E)$ such that $Q(\mathcal{R}:A)\cap M_1 \neq \phi$ and $2 \leq \overline{A} < \aleph_0$, then $A \subset M_0$, so that $A \subset X - G_{M_0}(R)$.

If $A \cap \{\bar{F}(R:G_{M_0}(R)) - G_{M_0}(R)\} = \phi$, then $A \subset X - \bar{F}(R:G_{M_0}(R))$, and therefore $Q(\mathfrak{R}:A) \cap M_1 = \phi$, which is a contradiction.

If, $A \cap \{\bar{F}(\mathcal{R}:G_{M_0}(R)) - G_{M_0}(R)\} \neq \phi$ and $A \not\subset \{\bar{F}(R:G_{M_0}(R)) - G_{M_0}(R)\}$, then $\bar{F}(R:G_{M_0}(R)) - G_{M_0}(R)$ is a lower proper R-supporting hyperplane of A, and therefore, $Q(\mathcal{R}:A) \cap M_1 = \phi$, which is a contradiction. Therefore $A \subset M_1 = \{\bar{F}(R:G_{M_0}(R)) - G_{M_0}(R)\} \cap M_0$ and therefore M_1 is a \mathcal{R} -extremal subset of E. Since $M_1 \subset M_0$ and M_0 is a minimal \mathcal{R} -extremal subset of E, it is a contradiction.

Therefore M_0 has only one point which is a \mathcal{R} -extremal point of E.

Corollary. Suppose that E is a compact strong \Re -extremal set, then for any $R \in \Re$, $F_E(R) - G(R : F_E(R))$ or $\overline{F}(R : G_E(R)) - G_E(R)$ has at least one \Re -extremal point of E.

Proof. By the same way in Theorem 1, we can prove that $M = \{F_E(R) - G(R : F_E(R))\} \cap E$ is a compact \mathcal{R} -extremal subset of E,

Theorem 2. Let $\mathcal{E}(\mathcal{R}:E)$ be all \mathcal{R} -extremal points of a compact strong \mathcal{R} -convex set E, then, $E = a \cdot k(\mathcal{R}:\mathcal{E})$.

Proof. $\mathcal{E}(\mathcal{R}:E)\subset E$ implies $a\cdot k(\mathcal{R}:\mathcal{E})\subset E$. Suppose that there exists a point x_0 contained in the set $E-a\cdot k(\mathcal{R}:\mathcal{E})$, so that there exists $R\in\mathcal{R}$ such that $x_0\in E$ and $x_0\notin F_{\mathcal{E}}(R)$ or $x_0\in E$ and $x_0\in G_{\mathcal{E}}(R)$.

If $x_0 \in E$ and $x_0 \in F_{\mathcal{C}}(R)$, then $\{F_E(R) - G(R : F_E(R))\} \cap \mathcal{E} = \phi$.

If $x_0 \in E$ and $x_0 \in G_{\mathcal{C}}(R)$, then $\{\bar{F}(R: G_E(R)) - G_E(R)\} \cap \mathcal{E} = \phi$. Therefore we can introduce a contradiction to the corollary of Theo-

rem 1. We remark that a compact strong \mathcal{R} -convex set E is the strong

 \mathcal{R} -convex hull of the set of all \mathcal{R} -extremal points of E.

The following result is a generalization of a result of Jerison to

a topological \mathcal{L} -space.

Theorem 3. Let $\{K_n\}$ be a sequence of compact strong \mathcal{R} -convex

sets such that $K_1 \supset \cdots \supset K_n \supset K_{n+1} \supset \cdots$ and let $K = \cap K_n$. Let A_n be the set of all \mathcal{R} -extremal points of K_n for each n and let A be the topological superior limit of $\{A_n\}$. Then K is the closed strong \mathcal{R} -convex hull of A.

Proof. Let F_n be the closure of $\bigcup_{m=n}^{\infty} A_m$, then $A = \bigcap_{n=1}^{\infty} F_n$. Since $F_n \subset K_n$ for each n, $A \subset K$ and therefore, $\bigcap \{F_A(R) - G_A(R) : R \in \mathcal{R}\} \subset K$. By the Krein-Milman's Theorem in a topological \mathcal{R} -space (see [5]), $k(\mathcal{R}:F_m)=K_n$ for each n, i.e. $(G(R:F_{F_n}(R)),F_{F_n}(R))=G(R:F_{k_n}(R))$, $F_{k_n}(R)$ and $(G_{F_n}(R),\bar{F}(R:G_{F_n}(R))=(G_{k_n}(R),\bar{F}(R:G_{k_n}(R)))$ for each $R \in \mathcal{R}$ and n.

Consider a fixed $R \in \mathcal{R}$. Since F_n is a compact set, there exists a point x_n in $\{F_{F_n}(R) - G(R : F_{F_n}(R))\} \cap F_n$. The sequence $\{x_n\}$ has a cluster point x_0 which is contained in A.

Now we consider the topological superior limit of $\{F_{F_n}(R) - G(R:F_{F_n}(R))\}$ and let $X = A \cap \lim_n \sup \{F_{F_n}(R) - G(R:F_{F_n}(R))\}$. It is clear that $(G(R:F_x(R)), F_x(R)) \leq (G(R:F_{F_n}(R)), F_{F_n}(R))$ for all n and there is no member $(G, F) \in R$ such that $(G(R:F_x(R)), F_x(R)) \leq (G, F) \leq (G(R:F_{F_n}(R)), F_{F_n}(R))$ for all n. Since $x_0 \in X$, $(G_{x_0}(R), F_{x_0}(R)) = (G(R:F_x(R)), F_x(R))$. On the other hand, since $(G(R:F_{k_n}(R)), F_{k_n}(R)) = (G(R:F_{k_n}(R), F_{F_n}(R))$ for all n and $K = \bigcap_{n=1}^{\infty} K_n \subset K_n$, $(G(R:F_k(R)), F_k(R)) \leq (G(R:F_{k_n}(R)), F_{k_n}(R))$ and therefore $(G(R:F_k(R)), F_k(R)) \leq (G_{x_0}(R), F_{x_0}(R)) \leq (G(R:F_k(R)), F_k(R))$. Analogously we have

Therefore $K \subset \bigcap \{F_A(R) - G_A(R) \mid R \in \mathcal{R}\}.$

Hence we have $K = a \cdot k(\mathcal{R} : A)$.

Theorem 4. Let E be a compact strong \Re -convex subject of a topological \Re -space (X, \Re) and let C be the subset of E which intersects any minimal closed \Re -extremal subset of E, then E is the strong \Re -convex hull of C.

 $(G_A(R), \bar{F}(R:G_A(R))) \leq (G_{x_0}(R), F_{x_0}(R)) \leq (G_k(R), \bar{F}(R:G_k(R))).$

Proof. If $k(\mathcal{R}:C) \not\supset E$, there exists a point x_0 such that $x_0 \in E$ and $x_0 \notin k(\mathcal{R}:C)$.

Let a R_0 -halfspace $M_0 \supset C$ and $M_0 \not\ni x_0$, then $M_0 \subset G_{x_0}(R)$ or $M_0 \subset X - F_{x_0}(R)$.

If $M_0 \subset G_{x_0}(R)$, then $B = E \cap F_E(R) - G(R : F_E(R))$, a closed \mathcal{R} -extremal subset of E, does not intersect C.

If $M_0 \subset X - F_{x_0}(R)$, then $B = E \cap \overline{F}(R : G_E(R)) - G_E(R)$, a closed \mathcal{R} -extremal subset of E, does not intersect C. We have arrived at a contradiction.

References

- [1] E. Deák: Ein neuer topologischer Dimensionsbegriff. Revue Roum. Math. Pure. Appl., 10, 31-42 (1965).
- [2] —: Über die inwendiger Punkte Konvexer Mengen. Revue Roum. Math. Pure Appl., 11, 1225-1231 (1966).
- [3] —: Eine Verallgemeinerung des Begriffs des linearen Raumes und der Konvexität. Ann. Univ. Sci. Budapest. Sectio Math., 9, 45-59 (1966).
- [4] —: Topologische Richtungsräume-eine Verallgemeinerung des Begriffs des lokalkonvexen Raumes mit der schwachen Topologie. Studia Sci. Math. Hung., 1, 297-308 (1966).
- [5] —: Extremalpunktsbegriffe für Richtungsräume und eine Verallgemeinerung des Krein-Milmanschen Zatzes für topologische Richtungsräume. Act. Math. Acad. Sci. Hung., 18, 113-131 (1967).
- [6] M. Jerison: A property of extreme points of compact convex sets. Proc. Amer. Math. Soc., 5, 782-783 (1954).