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24, On R.convex Sets in a Topological R-space

By Ayako HIGASHISAKA

(Comm. by Kinjiré KUNUGI, M. J. A., Feb. 12, 1959)

§1. Introduction. In this paper we shall consider the Krein-
Milman’s Theorem and the applications on a topological R-space which
has not vector spacestructure. The notion of topological R-spaces is
introduced by E. Deak [1]-[5].
We shall first give the some definitions.
(1.1) A system R of the ordered pair (G, F) consisting of the
subsets of a nonempty set X is called a Richtung of X, if it satisfies
the following conditions:
(R) (¢,9), (X, X)eR.
(R,) For any (G, F) e R, GCF and for two different pairs
(G, F), (G, F))e R, F,.C G, or F,CG,.

(R) Let G(R) be a family of the first part of all elements of E.
U{G|G e G*} e G(R) (G*C 4(R), G*x¢).

(R) Let F(R) be a family of the second part of all elements of E.
N{F|F € §*} e F(R) (F*C I (R), F*x¢).

(R) U{F-G|(G, F)eR}=X.

(1.2) Let R={R,|R,: Richtung, a € A}. A R-space is an ordered
pair (X, R) such that the following separation axiom is satisfied.

(S.A) Any set of the type, N{F,—G,|(G, F,)eR, acA} con-

tains at most one element.

(1.3) For a R-space (X, R), theset G, X—F or F, X—G is called
the open or closed R-half spaces of X.

(1.4) A R-space (X, R) is called a topological R-space if we in-
troduce the topology in X such that a family of all open R-half spaces
is a subbasis.

(1.5) For any Richtung R of X, it is clear that the relation:

(G, F)<(G,, F,)&F,C @G, is a linear order of R.
For any G € G(R) or F ¢ F(R) is the first or second part of at most two
different elements of R. G(R: F) or G(R: F) denotes the smaller or
larger set G € G(R) such that (G, F) ¢ R, and in the same way we can
define F(R: @) and FI(R: G) for any G e G(R).

(1.6) For any nonempty set EcX and Re R of a R-space
(X, R), we give the following notations:

Ge(R)=U{Ge 4R)|GNE=4¢},
FxR)=N{Fe%R)|FQL}
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F,(R)=N{Fe4R)|F o},

Sy(R)=Fx(R)—G(R: Fx(R)),

Te(R)=F(R: Gxz(R))—Gx(R).
It follows from (R,) that (G,(R), F,(R)) e R for each x e X and each
R e R, and that S, (R)=T,(R).

1.7 Let (X, R) be a R-space and Re R. If (G,F)eR and
G&F, the set F—G is called a R-hyperplane. The set SCX is a R-
hyperplane if it is a R-hyperplane for some Re R. A R-hyperplane
S=F—@G is an upper or lower R-supporting hyperplane of EC X, if
SNEx¢ and ECF or ECX—G. If E—Sx¢, a R-supporting hyper-
plane S of E is called a proper R-supporting hyperplane of E.

It is clear that the set of E has an upper or lower R-supporting
hyperplane if and only if Sy(R)NEx¢ or Tx(R)NE=x¢, and then
Sz(R) or Tz(R) is an upper or lower R-supporting hyperplane.

We can prove that if £ is a compact set, there exist the upper
and lower R-supporting hyperplanes of E for any R e QR.

(1.8) The strong R-convex hull of EC X is the intersection of
all QR-halfspace containing E and we denote it by k(R:E). If
E=k®R:E), E is a strong R-convex set. By a-k(R:E) we denote
the closed strong R-convex hull of EC X defined by the intersection of
all closed R-halfspace containing E.

(1.9) The quasi R-inner of the set EC is the set

QR : E)=KkR: E)— U{all proper R-supporting hyperplane}

§2. R-extremal sets and R-extremal points.

Let (X, R) be a R-space and ECX. A R-extremal set of E is a
subset MCFE such that ACM whenever ACK(R: E), 2< A<}, and
MNQR:A)x¢. If M={x}, «, is called a R-extremal point of E.

The following properties of R-extremal subsets of E can be easily
verified.

(2.1) Any union of R-extremal subsets of a set F is a R-ex-
tremal subset of E.

(2.2) Any intersection of R-extremal subsets of a set E is a R-
extremal subset of F. ‘

2.3) If A is a R-extremal subset of B and, B is a R-extremal
subset of C, then A is a R-extremal subset of C.

(2.4) If AcBcC and if A is a R-extremal subset of C, then A
is a R-extremal subset of B.

(2.5) Let C be a family of sets in a R-space, and let Y= (" X.

xeC
If one of any two members of ( is a R-extremal subset of the other,

then Y is a R-extremal subset of each X ¢ (.
§3. The Krein-Milman’s Theorem.
Theorem 1. A nonempty compact strong R-convex subset E of
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a topological R-space has at least one R-extremal point.

Proof. The set E is itself a R-extremal subset of E. Let 9 be
the totality of compact R-extremal subsets of E. Order . by the set
inclusion relation. It is easy to see that if 9, is a linearly ordered
subfamily of .9, there exists a compact R-extremal subset of £ which
is a lower bound for the subfamily ;.

Thus, by Zorn’s lemma, 9 contains a minimal element M,. Sup-
pose that M,>2. Then there exist Re R such that F(R: Gy (R))
NM,CM, Since M, is the compact set, M,={F(R: Gy (R))—Gy(R)}
ﬂ Mo# ¢‘

On the other hand, suppose that A is a subset of K(R: E) such
that Q(R:A)NM,x¢ and 2<A<\R,, then AcCM, so that AcX
~Gu(R). )

If AN{F(R: Gy, (R)—Gy,(R)}=¢, then AcX—F(R: Gy,(R)), and
therefore Q(R : A) N M,=¢, which is a contradiction.

If, AN{F(R:GuR)—GuB}x¢ and AG{F(R: Gy (R)—
Gy, (R)}, then F(R: Gy (R)—Gy(R) is a lower proper R-supporting
hyperplane of A, and therefore, Q(R: A) N M,=¢, which is a contra-
diction. Therefore Ac M,={F(R: G, (R))— Gy, (R)}N M, and therefore
M, is a R-extremal subset of E. Since M,c M, and M, is a minimal
R-extremal subset of E, it is a contradiction.

Therefore M, has only one point which is a R-extremal point of
E.

Corollary. Suppose that E is a compact strong R-extremal set,
then for any Re R, Fy(R)—G(R: Fx(R)) or F(R: Gz(R)—G4(R) has
at least one R-extremal point of E.

Proof. By the same way in Theorem 1, we can prove that
M={Fy(R)—G(R: Fz(R)}NE is a compact R-extremal subset of E,

Theorem 2. Let E(R : E) be all R-extremal points of a compact
strong R-convex set E, then, E=a-k(R: E).

Proof. &(R:E)CE implies a-k(R: E)cE. Suppose that there
exists a point x, contained in the set E—a- k(R : &), so that there ex-
ists R e R such that z,¢ E and z,¢ Feo(R) or x,¢ E and x, € Gg(R).

If #,e £ and , € Fe(R), then {F4(R)—G(R: Fy(R)}NE=¢.

If 2,¢ E and x, € Gg(R), then {F(R: Gz(R)—Gx(R)}NE=¢.
Therefore we can introduce a contradiction to the corollary of Theo-
rem 1.

We remark that a compact strong R-convex set E is the strong
R-convex hull of the set of all R-extremal points of E.

The following result is a generalization of a result of Jerison to
a topological R-space.

Theorem 3. Let {K,} be a sequence of compact strong R-convex
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sets such that K,o>---2DK,DK,.,D--- and let K=NK,. LetA, be
the set of all R-extremal points of K, for each n and let A be the topo-
logical superior limit of {A,}. Then K is the closed strong R-convex
hull of A.

Proof. Let F, be the closureof Uz_,A,,, then A= F\ F,. Since
n=1

F,cK, for each n, Ac K and therefore, N {F (R)—G,(R): Re R}CK.
By the Krein-Milman’s Theorem in a topological R-space (see [5]),
KR:F,)=K, for each n, i.e. (GR: Fy (R), Fp (R)=G(R:F, (R)),
F. (R)) and (Gg (R), FR: Gp, (R)= (G (R), F(R: G, (R)) for each
Re R and n.

Consider a fixed Re R. Since F, is a compact set, there exists a
point z, in {Fy (R)—G(R:Fy (R)}NF,. The sequence {x,} has a
cluster point «, which is contained in A.

Now we consider the topological superior limit of {F (K)
—G(R: Fy (R)} and let X=ANlim ,sup {Fy (R)—G(R: Fg (R)}. It
is clear that (G(R: F,(R)), F.(R)=(G(R: Fy (R)), Fy (R)) for all » and
there is no member (G, F) ¢ R such that (G(R: F(R)), F(R)=(G, F)
sS(G(R: Fp (R), Fy (R)) for all n. Since z,¢ X, (G, (R), F,(R))
=(G(R: FR)), F(R)). On the other hand, since (G(R: F; (R)),

F, (R)=(G(R: Fy (R), Fy (R)) for all n and K= fi\ K,cK,, (GL:

Fy(R), F.(R)=Z(G(R: Fy (R)), Fy (R)) and therefore (G(E: Fy(R)),
F.(R)NZ(G,(R), F,(R)Z(GRR: F,R), F,(R)). Analogously we have
(G4(R), F(R: G4R))= (G, (R), F,(R)=(G(R), F(R: G(R))).

Therefore K< N{F(R)—G,(R)|Re R}.

Hence we have K=a k(R : A).

Theorem 4. Let E be a compact strong R-convex subject of a
topological R-space (X, R) and let C be the subset of E which inter-
sects any minimal closed R-extremal subset of E, then E is the strong
R-convex hull of C.

Proof. If k(R:C)pE, there exists a point z, such that z,e K
and z, 2 k(R : C).

Let a R,-halfspace M,>C and M, 2 «,, then M,c G, (R) or M,CcX
—F,(R).

If M,cG,(R), then B=ENFz(R)—G(R: F(R))}, a closed R-ex-
tremal subset of E, does not intersect C.

If M\\cX—F,(R), then B=ENF(R: GzR)—Gx(R)}, a closed R-
extremal subset of E, does not intersect C. We have arrived at a
contradiction.
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