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Let H be a real or complex Hilbert space, whose inner product
and norm are denoted by < , >and | |. Let DCH and let {T,; >0}
be a semi-group of mappings of D into itself. For KCH and e H,
let Cx(x) be the strong closure of the set {r(z—=x);r>0,z¢ K}. If K
is a closed subset of D and if T, KCK for t>0, it is obvious that we
have

Az=s—lim % (T\x—2) € Cx(®), x ¢ 9K o)

R0

whenever the strong limit exists. We are interested in the converse
problem : under what conditions on {T;,} and K does (1) imply T.KCK,
t>0. We consider this converse problem when {T,} is a strongly
continuous semi-group of contractions and K is a closed convex set.”
Our result is given in Theorem 1 below. Theorem 1 enables us to
prove Theorem 2 which gives a sufficient condition on a (nonlinear)
dissipative operator that it be a strong generator of a semi-group of
contractions on a closed convex set. Finally we apply Theorem 2 to
prove Theorem 3 which shows the existence of a sequence of semi-
groups with continuous infinitesimal generators approximating a given
semi-group of contractions on a closed convex set.

We begin with a simple lemma which we shall need later.

Lemma 1. Let uec H and K be a closed convex subset of H. Then
there exists one and only one element veK such that |u—v]|
=inf {|u—z|;2eK}. Moreover, we have the inequality

Re {y, u—v><0, y € Cx(v). (2)

Proof. We shall prove the inequality (2). For y e Cx(v) we can

find a sequence 7,>0 and a sequence z, € K such that y=s—1lim r,(z,

—v). Since v+ec(z,—v) € K for 0<e<1, it follows that
[ U—v—c(z,—v)| > |u—v|, 0<e<L1.

n—oo

This gives
Re <z,—v, u—v><0.

1) It is to be noted that (1) does not necessarily imply T, KCK, t>0, if we
do not assume that T; is a contraction for t>0.
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Hence we have
Re (y, u—v)=Ilim Re {(r,(2,—v), u—2v><0.

n—oco

Theorem 1. Let C be a subset of H, and K a closed convex subset
of C. Let{T,;t>0}bea strongly continuous semi-group of contractions
on C with strong generator A,. If 0KCD(A,) and A e Cx(x) for all
x e 0K, then we have T,x € K for all x ¢ K and all t>0.

Proof. Suppose that there is an x, € K such that T,z, € C\K for
some b >0. Then thereisana ¢ [0, b) such that T,x, ¢ 0K and T,x, ¢ C\K
whenever t € (a, b], since T,x, is continuous in ¢ and K is closed. Let
2y=Tyx, and 6=b—a. Thus 0>0. We set w(t)="T,x,.

Since K is closed and convex, there exists, for 0<t<d, a unique
element v(t) e 0K satisfying |u(t)—v(®)| =inf {|u(t)—z|;2zc K}. We
define p(t)= |u(t)—v(¥)|. It is clear that p(0)=0 and p(t) >0 whenever
0<t<0. Since p(8)< |u(s)—v(t)| for s, t>0, we find

p(®)—p® < Jue)—v(@) | — |ul®) —v(t) | < |uls)—u®)|.
Hence we obtain
[o(8)—p@®)| < |u(s)—u(?)| for s, t>0. (3)

Since z, € D(Ay), u(t) is in D(4,) for ¢>0 and u is Lipschitz con-
tinuous (see [1], Lemma 1.1). Hence, by (3), p is Lipschitz continuous
and, since p(0)<p(d), there is a t*e(0,0) such that u and p are

differentiable at ¢* and %‘%(t*)>0. We now define 7(t)= | u(t)—v(t*)|

for t>0. Itis clear that o(t*)=r(t*) and p(¢) <r(?) for t>0. Therefore,
we have

dr? dp* dop

() =2 (%) = 20(EF) 2 (¢ 0. 4

dt() dt() o( )dt()> (4)
Using Lemma 1 and the dissipativity of 4,, we obtain

id’;_z t)=2 Re (Aqu(t¥), u(t*)—v(t*)>
<2 Re {Au(t*)— Aw(t*), u(t*)—v(t*)> <0,

which contradicts the inequality (4). The proof of Theorem 1 is
complete.

For z,ye H, we denote by (x,y) an element of the Cartesian
product HX H. If ACHXH, then D(A) denotes the set of all xe¢ H
such that (z, ¥) € A for some y e H. For x e D(4), Ax denotes the set
of all ¥ ¢ H such that (z, y) ¢ A. If Ax consists of a single element for
all x e D(A), then A is called a function. A subset A of HX H is said
to be dissipative if for all (x,, ¥,) and (x,, ¥,) in A

Re (@ —2,, y1—v,><0.

Definition. Let C be a subset of H and A a dissipative subset of
CxH. A is said to be
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(a) C-maximal dissipative if A is not properly contained in any
dissipative subset of CX H;
(b) functionally C-maximal dissipative if A is a function which
is not properly contained in any dissipative function with
domain in C.
If A is a C-maximal dissipative set, then for x ¢ D(A) we have
Ax={yeH;Relw'—ux, y'—y><0 for all (2, ¥") € A}
which is a closed convex set. Hence there is a unique element A°x ¢ Ax
such that |A'2|<|y| for all ye Ax. Thus we have defined the
function A° with domain D(A%=D(A), which will be called the minimal
cross-section of A (see [1]).
Example. Let H=R’. Let 2,=(1,1), 2,=(—1,1), 2,=(—1, —1),
z,=@1, —1) and C={x,, @,, x;, v} H. For h>0, we define
A, =(—o00, —hlIX(—o0, k], A,x,=[—h, 00) X (—oo0, —Hh],
Ay, =[h, ©0)X[—h, ) and A,x,=(—o0, k1X[h, o).
Then A, is C-maximal dissipative subset of HX H and we have A%z,
=(—h, 0), ASx,=(0, —h), ASx,=(h,0) and A%x,=(0, ). Hence, if
h>k>0, then AS,C A, and A% =~AS (cf., [1], Theorem 2.4 (b)).

The next theorem gives a sufficient condition on a dissipative
operator that it be the strong generator of a semigroup of contractions
on a closed convex set.

Theorem 2. Let K be a closed convex subset of H and let A bea
subset of KX H with the following properties:

(i) Ais K-maximal dissipative and A° is functionally K-maximal

dissipative ;

(ii) D(A) is dense in K ;

(iii) 0KCD(A) and A’ e Cx(x) for all x c 0K.

Then there exists a uniquely determined strongly continuous semi-
group of contractions on K such that its strong generator is A°.

Proof. Let B be an H-maximal dissipative set containing A.
Then there is a strongly continuous semi-group S of contractions on
D(B) such that its strong generator is B%(see [1], Theorem 1). Let
T={T,; t>0} be a strongly continuous semi-group of contractions
which is a maximal extension of S. Then it is clear that the domain
C of T is closed. Therefore, condition (ii) together with D(A)CC will
imply KCC. Let G be the strong generator of T so that G is a
dissipative extension of B°. Since 4 is a K-maximal dissipative subset
of B, B®is an extension of A°. Thus G is an extension of A°. Now it
follows from (i) that A° is the restriction of G to KN D(G). Hence, by
(iii) and Theorem 1, we have T,KC K for all t{>0. We have proved the

existence of a strongly continuous semi-group on K with strong
generator A°.
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To prove the uniqueness, let U={U,; t>0} and V={V,; t>0} be
two strongly continuous semi-groups of contractions on K such that A°
is the strong generator of U as well as of V. Then, for every x € D(4),
U,x and V,x are absolutely continuous on [0, co) and we have U,x € D(A4),
V.x e D(A) for all t>0 and %Utsz"Utx, otlit Vx=AV,x for almost
all ¢>0 (see [1], Theorem 1.4). Therefore, it follows from the dissi-
pativity of A° that U,x=V,x for « € D(A) and {>0. Hence, by (ii), we
have U,x=V,x for all x ¢ K and all £>0.

Remarks., (a) In Theorem 2, (i) and (iii) do not imply (ii) generally.
For example, let H=R!, K=[0, ) and f be a real-valued, continuous
and decreasing function defined on [0, 1) such that f(0)>0 and lim f(x)
— — . Let A be a subset of Kx H defined as follows: o

[£(0), o) if =0,
Ax={{f(x)} if 0<e <1,
¢(empty set) if x>1.
Then A satisfies (i) and (iii) in Theorem 2. However, D(A) is not
dense in K.

() In Theorem 2, if K is the closed convex hull of 0K, then (i)
and (iii) imply (ii). This implication is proved as follows. In the
proof of Theorem 2, we showed the existence of a semi-group on K
with strong generator A° using (ii) once for all to obtain KCC. We
note that C is closed and convex (see [5]). Therefore, if K is the closed
convex hull of 0K, 0KCD(A)CC implies KCC. Hence there is a semi-
group on K such that its strong generator is A°. Then D(A®) is dense
in K (see [5], [3]).

As a simple application of Theorem 2 we shall prove the following
theorem.

Theorem 3. Let K be a closed convexr subset of H and let
{T,; t>0} be a weakly continuous semi-group of contractions on K.
For a fixed positive real number h, we define

Aw:%(Thx—x), zeK.

Then there is a strongly continuous semi-group of contractions on K
such that its strong generator is A,,.

The proof of Theorem 3 is based on the following lemma.

Lemma 2. Let KCH and let A be a dissipative function defined
on K satisfying the following conditions :

(i) There is a positive real number r such that

z+cAxe K for xe K and 0<c<r,
(i) w—lim A(x+cAx)=Ax for x c K.

clo
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Then, for any dissipative set B containing A, we have
|Ax| < |y] for x € K and y € Bz.
Proof. Let xec K and y ¢ Bx. We set
Y.=A(x+cAx) for 0<e<Lr.
It follows from AC B and the dissipativity of B that

Re (y.—9, Ax>=-:‘:— Re (yo—y, (& + cAz)—x><0.

Then we have
Re(JAz|y,— |y|Ax, Axd><Re {|Ax|y— |y|Ax, Ax)><O0.
Therefore it follows from (ii) that
|yl Awf21lim Re (| Az |y,, Az)=|Aaf.

Proof of Theorem 3. A, is a dissipative function on K satisfying
the conditions (i) and (ii) in Lemma 2 with r=h. Let B be a K-
maximal dissipative set containing A,. Then it follows from Lemma
2 that B'x=A,x for xtc¢ K. Hence we have B¢ e Cx(x) for x e K.
Since D(B)=K, the proof of Theorem 3 is complete by Theorem 2.
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