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78. Generalizations of M-spaces. I

By Takesi ISIWATA
(Comm. by Kinjird KUNUGI, M. J. A., May 12, 1969)

In this paper we shall give some generalizations for the notion of
M-spaces introduced by K. Morita [8]. A space X is called an M-space
if there exists a normal sequence {II;} of open coverings of X satisfy-
ing the following condition (M) below :

If {K,} is a decreasing sequence of non-empty closed sets of

(M) X such that K,c St(«,, 11,) for each i and for a fixed point x,

of X, then NK,+¢.

From condition (M) we obtain further a condition (M’) (resp. (M,))
with the phrase “K, is a closed set” replaced by “K, is a zero set”
(resp. “K, is a closed G,-set””) and we shall call a space X an M’-space
(resp. My-space) if X satisfies the condition (M’) (resp. (M,)). The class
of M’-spaces contains all pseudocompact spaces and all M-spaces.
There are properties for M’-spaces similar to those for M-spaces, for
instance, an M’-space X has Morita’s paracompactification ¢X which
is obtained by K. Morita for M-spaces. Moreover, as a nice prop-
erty of M’-space, any subspace of X, containing X, is always an
M’-space while this property does not hold in case X is an M-space.

For simplicity, we assume that all spaces are completely regular
T.-spaces and that mappings are continuous; we denote by X and vX
the Stone-Cech compactification and Hewitt realcompactification of a
given space X respectively. For a mapping ¢: X—Y, the symbol @
denotes the Stone extension of ¢ from SX onto fY. N is the set of
all natural numbers. Other terminologies and notations will be used
as in [3].

1. Characterization of M'.spaces.

Let ¢ be a mapping from X onto Y. ¢ is a WZ-mapping if
clix () =0 (y) for each y € Y [7] and ¢ is a Z (resp. Z,)-mapping if
o(F) is closed for each zero set (resp. closed G,-set) F of X. A Z (resp.
Z,)-mapping ¢ is a Z, (resp. Z,,)-mapping if ¢~'(y) is pseudocompact
for each ye¢ Y. A subset F of X is called a relatively pseudocompact
if f is bounded on F for each fe C(X). A Z-mapping ¢ is said to be
an SZ-mapping if ¢ '(y) is relatively pseudocompact for each y e Y.

K. Morita [8] has proved that X is an M-space if and only if there
exists a quasi-perfect mapping ¢ from X onto some metric space Y
where a closed mapping ¢ is called a quasi-perfect mapping if ¢~'(y)
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is countably compact for each ¥y ¢ Y. The proof of the following theo-
rem is a modification of K. Morita’s and hence we shall only state in
different points.

Theorem 1.1. A space X is an M’-space (resp. M;-space) if and
only if there exists an SZ (resp. Z,,)-mapping from X onto some
metric space Y.

Proof. Since the “if” part is the very same as one of Theorem
6.1 in [8], we shall prove only the “only if” part. Let (X,1l) be a
space obtained from X by taking {St(x,1,); i € N} as a basis of neigh-
borhoods at each point x of X and ¢, the identity mapping of X onto
(X,1). We introduce a relation “~” in (X, 1) defining by “x~y” if
y e NSt(x, U,) and denote by Y the quotient space obtained from this
relation and ¢, the quotient mapping from (X, 1) onto Y. It is obvi-
ous that Y is metrizable and ¢=¢,p, is continuous. Suppose that
A=Z(y) is a zero set of X and y,e ¢(4) and z,€ ¢ '(y,). Since ¢, is
known to be open,

B,=¢@,(int{x; St(x, 1) St (x,, I1;) for some n})
is open and contains y,. From this we have St(z,,11,)NA+#¢ (e N).
Let d be a distance function on Y. B, being open in Y, there is a
positive number r; such that {r;} | 0 and

F,={y; A, ¥) £Lr}C B, and intF,N@(A)#¢.
Then F;=Z(g,) where g,(y)=d¥, ¥)V7;—71;, and E,= ¢ 'F,=Z(g,p) is
a zero set of X and Z,=E,NA(s+¢) is also a zero set of X. By the
condition (M’) we have NZ;#¢. If x,e NZ,, then =, e NSt(x, U,
which shows that ¢(A) is closed.

Next we shall prove that ¢ '(y) is relatively pseudocompact for
each ye Y. If there exists a positive function f e C(X) which is un-
bounded on ¢ '(y), then Z,={x; f(x)Xn}N¢e ' (y) is a zero set of X
because ¢7'(y) is a zero set of X, and {Z,} is decreasing. Since Z,
CSt(x, 11,) (e N) and for a fixed point x, in ¢~'(y), the condition
(M’) implies that NZ,+¢ which is a contradiction. The proof for an
M ,-space is the very same as one of an M’-space.

Remark 1.2. A space X is said to be an M, -space if there exists
a Z,-mapping from X onto some metric space Y. It is easy to see that
the following implications hold:

M-spaces— M,-spaces— M, ,-space—IM’-space
and that if X is normal, then these four spaces coincide (cf. [7], 1.3).

Corollary 1.3. Every pseudocompact space is an M;-space.

In the next paper it is shown that a non-countably compact,
pseudocompact space is not an M-space. Since a mapping from a
pseudocompact space onto a metric space is always an SZ-mapping
([71,1.5 and Theorem 2.1), a product of a pseudocompact space with a
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metric space is an M, -space.

2. Some properties of M’.spaces.

A gspace X is said to be topologically complete if there is a uni-
formity for X relative to which X is complete. The following lemmas
will be used in this section.

Lemma 2.1. If F is a relatively pseudocompact subset of a sub-
space of Z and F is dense in ECZ, then E is a relatively pseudocom-
pact subset of Z.

Lemma 2.2. If Fis a relatively pseudocompact closed subset of a
topologically complete space, then F is compact (cf. [2]).

Lemma 2.3. If ¢ is a perfect mapping from X onto Y, then X
is a paracompact M-space if and only if so is Y ([4], [6], [9]).

Lemma 2.4. If ¢ is a WZ-mapping from X onto a metric space
Y such that ¢~'(y) is relatively pseudocompact for each ye 'Y, then ¢
18 a Z-mapping and hence ¢ is an SZ-mapping ([7], 1.4 and 3.1).

If X is an M’-space, then there exists some metrizable space men-
tioned in Theorem 1.1. But such a metric space is not necessarily
unique and hence we shall denote by M(X) the set of all such metriza-
ble spaces and we set pyy(X)=90"%(Y) (Y e M(X)). @|puy(X) is obviously
a perfect mapping from py(X) onto Y. Since Y is a metric space, Y
is a paracompact M-space and by Lemma 2.3 p,(X) is a paracompact
M-space.

Theorem 2.5. If X is an M’-space and ¢ is an SZ-mapping from
X onto a metrizable space Y, then, in X, py(X) is the smallest topo-
logically complete subspace containing X.

Proof. Suppose that Xc Wc X and W is topologically com-
plete. ¢ being a SZ-mapping, clzo (y)=@ '(y) for each yeY.
¢ () is relatively pseudocompact in X and dense in a closed subset
WNo-(y) of W, and hence WNO&~(y) is relatively pseudocompact in
W by Lemma 2.1. Since W is topologically complete, & (y) "W is
compact by Lemma 2.2. This leads that o' (y»)=0"(y)NW, i.e.,
pr(X)cw.

Remark 2.6. This theorem means that u,(Y)=p,(Z) for all
Y,Z e M(X) and hence we denote by pX, called a Morita’s paracom-
pactification of X, the paracompact M-space determined uniquely in
the sense above. This theorem for M-spaces has been obtained by K.
Morita [10].

Corollary 2.7. If an M’-space X is topologically complete, then
X is a paracompact M-space. Particularly, if X is a realcompact M'-
space, then X is a paracompact M-space.

As is shown in the next paper, there is an M-space X such that
some subspace, of X, containing X is not an M-space. But we have
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the following theorem for M’-spaces.

Theorem 2.8. If X is an M’-space, then every subspace W of
pX such that XCWc pX is always an M’-space.

Proof. Let ¢ be an SZ-mapping from X onto a metric space Y
and ¢,=@|W. Then ¢;'(y) is relatively pseudocompact in W for every
yeY by Lemma 2.1 and Theorem 2.5. From Lemma 2.4 ¢, is a Z-
mapping. Thus ¢ is an SZ-mapping from W onto Y which shows
that W is an M’-space.

Now suppose that there is a realcompact space Y ¢ M(X). By
Theorem 2.5, pXCvX because vX is topologically complete. On the
other hand, p¢X is a preimage of a realcompact space Y under a per-
fect mapping and hence 4 X is realcompact ([3] or [7]). vX being the
smallest realcompact space of X containing X, we have vXc puX
which shows that pyX=vX. For any Z e M(X), Z is an image of a
realcompact M-space under a perfect mapping and Z is realcompact
([5] or [7]). From these we have

Theorem 2.9. Let X be an M’'-space, then

1) <if there exists a realcompact space in M(X), then so is every
space in M(X) and pX=vX and pX is a paracompact realcompact M-
space,

2) if there exists a non-realcompact space in M(X), then so is
every space in M(X) and pX CvX and pX is a paracompact M-space
which is not realcompact.

Similarly to Theorem 2.9 we have

Theorem 2.10. Let X be an M’-space. If there exists a space
Y € M(X) which is topologically complete in the sense of é’ech, then so
is every space in M(X) and pX is a paracompact M-space which is
topologically complete in the sense of Cech.

A space X is locally pseudocompact if every point of X has a
pseudocompact neighborhood. As in [1], we have

Theorem 2.11. If X is an M’-space, then X is locally pseudo-
compact if and only if there exists a locally compact space Y such
that XCYC pX.

Theorem 2.12. If X is an M’-space, then the followings are
equivalent :

1) X is locally compact.

2) Ewvery space in M(X) is locally compact.

3) There exists a locally compact space in M(X).

4) There exists a space Y € M(X) such that ¢~'(y) is contained in
o pseudocompact neighborhood for each y e Y where ¢ is an SZ-mapp-
ing from X onto Y.

5) For each p e uX, there exist pseudocompact subsets A and B
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of X such that pecl,zA, f=0on A and f=1 on B° for some f e C(X).

Proof. 5)<1)—4) follows essentially as in [1]. 1)-2)—3) are
similar to the proof of Theorem 2.9. 4)—2) is obtained from the fact
that cl,,V is a compact neighborhood of @-'(y) where V is a pseudocom-
pact neighborhood of ¢~'(y).

A subset F of X is said to be Z-embedded in X if for every zero
set Z of F, there exists a zero set Z’ of X such that Z=Z'NF. If F is
Z-embedded and completely separated from any zero sets disjoint
from it, then F is C-embedded (cf. [2]). Thus a zero set is C-em-
bedded if and only if it is Z-embedded. Since a Z-embeddable pseudo-
compact subset is pseudocompact, we have

Theorem 2.13. Let ¢ be an SZ-mapping from X onto a metric
space Y, then ¢~ '(y) is Z-embedded for each y e Y if and only if O~*(y)
=vo ' (y) for every ye Y (in this case X is an M,,-space).
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