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61. On the Evolution Equations with
Finite Propagation Speed

By Sigeru MIZOHATA
(Comm. by Kinjiré KUNUGI, M. J. A.,, March 12, 1970)

1. Introduction. Let

o\™ 0\ 0\
(1.1) (W) Uz, D= 33 0, D (%) (a_t) u(z, )
be an evolution equation defined on (z, t) € R* X [0, T]=2. We suppose
all the coefficients are infinitely differentiable, and that for any time
t, € [0, T) and any initial data
(2) uw ty=¢@) e D G=0,1, -, m—1),

there exists a unique solution u(x,t) for ¢ e [t,, T'] in some functional
space, say in B or in PD;» A<p< +00).?

We say that (1.1) has a finite propagation speed if for any compact
K in R!, there exists a finite A(K) (propagation speed) such that for any
initial data ¥'(2)=(p\(®), - - -, (@) € D, with initial time ¢, whose
support is contained in K, the support of the solution u(zx, t) is

contained in
U (s’ to) + C;—(K),

éesupl?]
where Cjx, is the cone defined by {(z,?); |z| <A(K)t, t>0}.

We say that (1.1) is a kowalevskian in 2, if the coefficients a,,(x,?)
appearing in the second member are identically zero if |v|+7>m.
Our result is the

Theorem. In order that (1.1) have a finite propagation speed, it
18 necessary that (1.1) be kowalevskian in L.

This theorem was proved by Garding [1] in the case where all the
coefficients are constant. Now we can prove this theorem by the
same method as in [2]. The detailed proof will be given in a forth-
coming paper. In this Note, to make clear our reasoning, we argue
on a simple equation.

2. Localizations of equation. Let
@.1) —a%-u(x, D= 3 a1 (%) wz, H)=a, (x t; aax ) u(,
be an evolution equation, not kowalevskion, in 2. Without loss of
generality, we may assume that at the origin the second member of
(2.1) is effectively of order p(>1). We can find then a complex num-

1) With regards to these notations, see [2]. As the proof given later shows,
this conditions can be replaced by weaker conditions.
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ber {,=&,+1n, (£ 9,#0), such that
2.2) Re > a,(0,0)(;=20>0.

Iv]=
Now take a function B(x) € ﬂg of small support taking the value 1 in a
neighborhood of x=0. Apply B(x) to (2.1), then

(2.8) -3_ Bw=a, (x, ) (Bw) + Z Op,, (:1:, )(ﬁ‘”’u)

where the coefficients may be supposed, by changmg these outside the
support of B(x), to be near the values at the origin (localization in the
xz-space) if we restrict the variable ¢ to a small neighborhood of zero,
say t<e. Here the order of a,,, is equal to (p— | ).

Now by the hypothesis of the well-posedness of (2.1), there exists
a constant C and % independent of (x,, ?;) such that it hold for any
initial data u(x,0) € 9,
2.9 |u(zy, t)| <C >, sup |Du(x,0)|, or

lelsh zeRl

<C X |D“u(z, 0)l|rgl,
la|<h

for any «, € suppl[p] and ¢,¢ [0, T]. So, let us denote by T,(x,t,) the
distribution (in ¥) defined by
2.5) W@y t) =Ty (s ), Uy, O

Let us suppose that (2.1) has a finite propagation speed. This
implies that there exists a positive constant 4 such that for x, € supp[S],
and %, € [0, €], (¢ small),
(2.6) supplT, (2, t) 1 C By (@) ={y 5 |Y— x| <A}
Now in any case of (2.4), it is shown that we can sharpen the inequal-
ity (2.4) in the following way:
@.7 [<Ty ), uly, 0| <C' 5 sup | Du(y, 0)],

a|<h |y-zol<ibo

where C’ depends on C, i and [, but does not depend on (,, t,).
Let 4,(n) be a continuous function =0 whose support is contained
in a unit sphere with center at the origin, and let u,(x) be the inverse

Fourier image. We define a sequence of solutions u,(x,t) of (2.1) by
the initial data,

Un(X, 0) =y (@) em™ “ouy(x) = y(x)em et 1ou(x) € 9,
where () is a function of 9 which takes the value 1 on the set |x|
< L (sufficiently large).
Next apply e~ "¢ to (2.8) after replacing u by u,, it becomes

(28) at (‘86 n. Eoun) a, (w’ aa + 1’&& ) (‘Be—-nx €ogy )

+ 220, y(x, ; _a_a_ + ng) (BPemewtoy,),

Now let us estimate the function
2.9 v (x, t)=e "%y, (2, t).
By (2.7),
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|~ tou, (x, 8) | = [T, 1), €750 (@)er™V “ouy(y)) |
=|<T(, t), e"¥="togimv- oy (y)} |
_<_C’ Z sup |D“{e”(”‘”'“e"””""’uo(y)}|.

lal<h ly-zi<2t

So we have
(2.10) | Va2, )| <C"n* exp(nd|&|t), for «esupplpl,
and te [03 5]’

where C” is a constant independent of («,t) and n. Remarking this,
let a(n) be a function of 9 having its support in a small neighborhood
of 7,, and taking the value 1 in a neighborhood of 7,. Finally, putting
(2.11) a,(p)=a(y/n),

we define the convolution operator «,(D). Applying this to (2.8), we
get a new equation localized in both « and » spaces:

gt (a,(D)pv,)= ap(x, ; aa +n§>(a (D)Bv,)
@12) + Dot aax ) @ (Dp0,)

+la.(D), a,1(Bv,) + 3 [a,(D), a,, J(B*v,).
3. Energy inequality. Let us consider the following equation:

0 _ . 0
B (@D, )=, (x 5ot nso) (@ (DYw) + f(z, D).

Taking account of (2.2), it is shown that the following inequality holds
for te[0,¢]:

62 -LjaDu@, i) 2w |aDw, O] - /@ b,
where | -|| denotes the L*-norm in R'. In fact, on the support of a,(y),
the symbol of ap(x, ; g—+ nE) behaves like a,(z,t;n{,). Now, in

view of (2.11), we have
|aP(n) | <constant. n~'.

So, if we develop the commutator [«,(D), a,], it holds:

[am ap]: ”ﬁ i*lox z0p (x’ H 76“"’ ’nf )a(‘)(D)‘I‘Rm I
where | R, ,(w)|| < constant. n'*?=™"1ul,
where, let us recall, ! is the dimension of the space and p is the order
of a,. The same kind of inequalities holds for [a,,a,,]. So, if we
take
3.3 m=h-+tl,
we shall have, in view of (2.10), (2.12) and (3.2):

L Jayoal zonvlaufol —en 3 Bl

—enr 3 a@fOv, = —onrt e 40|
1<klSm =1, pl=1 1< el Sm—1, ¢l =1
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e lZI @BV, || — € 02~ exp(n| &, | AD).
al=p

Namely
3.9 —@—Ilanﬁvnll 20n?|a,fv,ll—en? > [afnH P,
dat 1< el +lpl<sm
—cnP-texp(n|&,|At).
Define

S,W)= >, C¥*japn*®y,|.

lel+lpl<m
This means that we consider all the functions a{p*v, instead of

a,Bv, in (2.12). Then we shall have the same kinds of inequalities as
(3.4). 8o, if we choose C, large enough, summing up all the inequal-
ities thus obtained, we shall have

St > —g-nf’Sn(t) —c' nPtexp(n|&,| At).

Hence
P
S,(£)>S,(0) exp (E npt)

—c’' nP-lexp (-g- n"t) j:exp (— gnf’r) exp(n|&,| A7)dz.

Taking account of |a,(D)B(®)v.(x, 0)|| = ||a.(D)B@)e> *ux)|, and in
view of [2], we see that | a,[v,(x, 0)|| >0, (>0) for n large. A fortiori,
it holds S,(0)>4, for n large. Thus,

(3.5) Sn(t)z_‘;"_ exp (_g_nrt) for tel0,el, = large.

In fact, for n large, since p>1, we have n}&,| 1<-Z~'np. Then

I: exp (—- g-npt) exp (n|&,|Ar)dr gj: exp (— %n”r) dr
L["exp (~2c)a
S—n—; 0 exp ( 4 e
On the other hand, (2.10) shows that S, (t) < const. n* exp (1| &,| At).
This inequality is not compatible with (8.5) unless ¢=0. Thus we
proved the Thevrem in the Introduction by contradiction.

References

[1] L. Gérding: Linear hyperbolic partial differential equations with constant
coefficients. Acta Math., 85, 1-62 (1951).

[2]1 S. Mizohata: Some remarks on the Cauchy problem. J. of Math. Kyoto
Univ., 1, 109-127 (1961).



