954 Proc. Japan Acad., 46 (1970) [Vol. 46,

218. On a Characterization of a Potential
Theoretic Measure

By Takasi KaAyaANo® and Shiré OGawa**)

(Comm. by Kinjiré KuNUGlI, M. J. A., Nov. 12, 1970)

Introduction. In the first place, G. Anger [1] pointed out that
continuous potentials play an important role in the theory of potential.
We are concerned with a kernel ¢(x, y) with continuous potentials in
a locally compact space. In the case, we can define a certain family
of potential theoretic positive measures G*(¢) of which the adjoint
potentials are integrable by all measures generating continuous poten-
tials. The aim of this paper is to characterize the family of measures
G*($), which answers at the same time for a question posed by
G. Anger [2] in the case that ¢ are Newtonian kernel ¢, and a kernel
@y associated with the fundamental solution of the heat equation.
For the Newtonian kernel ¢, H. Cartan [4] gave the following well
known result; In order that a positive measure g is an element of
G*(®y), it is necessary and sufficient that the potential of p is not
identically infinity. But the above result does not hold for the kernel
@y and then we must find another characterization.

1. Notations and definitions. Let £ be a locally compact Haus-
dorff space and ¢(x,y) a measurable function in 2x 2. The kernel
é(w, ) defined by gz;(ac, ¥)=d¢(y, ) is called the adjoint kernel. Setting
gﬁ*(x,y)zsup(qi(x,y),O) and ¢~ (z,y)= —inf(¢(x,¥),0), we can denote
¢, y)=¢*(x, y)—¢~(x,y). The ¢-potential of a positive Radon meas-
ure g in 2 is defined by

*
qm(x):j é(@, Y p),

provided that ¢ ¢+ (x) and ¢ p~(x) are not infinity at the same time. The
adjoint potential ¢V p(x) is defined by the analogous way. ¢(x,y) is
called S-kernel if there exists at least such a positive measure A that
the support SA is compact and the potentials ¢A*(x) and $2-(x) are
continuous in 2. In the case that ¢(x,y) is S-kernel, we can consider
the following classes of measures,

F(¢)={2; 220, S2 compact, pA*(x) and A~ (x) continuous in 2}

G+(¢)={/z : #go,rgﬁy*dl and j*qg‘pdl< + oo for any A€ F+(¢)}-

o(z,y) is called T-kernel if ¢(x,y) is non-negative S-kernel and for
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any compact set K; there exist such a point z; in 2, a relatively com-
pact open set Ux containing K and a positive constant M depending
on 2z and Ug that qg(x, y)gMKé(xK,y) for any x of K and any y of
CUyg, where CU; denotes the complementary set of Ux. For a
T-kernel ¢ and a compact set K, we shall denote by E the set of the
all points x; with the above properties.

2. Characterization of the family G*(¢).

Theorem 1. Suppose that ¢(x,y) is o T-kernel in Q. If a non-
negative measure ( is such a measure that, for any compact set K in
Q, there exists a point xx in Ex that qvﬁ;z(xK)< + oo, p 18 an element of
G*(p). If for any compact set K there exists a positive measure A of
F*(¢p) of which the support SZ is contained by Ey, then the converse
holds.

Proof. As the support SA is compact for any 2 of F*(¢) and the
kernel ¢(z,y) is T-kernel, for the compact set S4, there exist such a
point z, in 2, a relatively compact open set U, containing SA and a
positive constant M, depending on z, and U, that

g[;(x, y)§M1g5(x1,y) for any x of SA and any y of CU,.
Let gy, and pgy, be the restrictions of ¢ on the set U, and CU, re-
spectively. Then we have

f*apdxzjw¢zdﬂUl+j*¢xdﬂ0m.

U, being relatively compact and ¢4 continuous in 2, the first integral
of the right hand side is finite. If x, is such a point that ¢,(z,) <+ co,
the second integral is also finite, because we have

j*ﬂbzdﬂcvz =rr¢§(x, WA pter,W)dA@)
Xk [k v
éj j MGz, v)d oo, (y)dAE)

X v
<M 4@k
<+ co.
Consequently, if the assumptions are fulfiled, the integral rﬂ(ﬁ pda is

finite for any A of F'*(¢), that is, p is an element of G*(¢$). Suppose
that p is an element of G*(¢). If there exists such a compact set K
that gZ,,(xK)z + oo for all ; of F, we have, for a positive measure A
of F'*(¢) of which the support S4 is contained by E,

V@M=+m,

which is contradictory.
Let ¢y(x) and @y (x) be the fundamental solutions of 4,u=0 and
4,_u—0ou/0x,=0 respectively, where 4, denotes the Laplacian in the
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n-dimensional Euclidian space B*. We define the following two kernels
in R,

@N(x9 y) 1 1
for x£y
=oy@—-yY)={ M—2w, |z—y[?
+ oo for =y
where w, is the surface area of the unit ball in R*(n=3) and
@W(xy ?/) 1 1 Z 1 ( )2
" i (X —Y,
- = exp[—t—l———] for ,>Y.
=pwp@—y)= (2«/ (X —Yn) ) A2 —Yn)
0 for 2,<v,
where z; is the i-th coordinate of z=(x,, x,, - - -, 2,).

The adjoint kernel éw is defined by éw(w, Y=0y(y,x). Given a
positive Radon measure g, we define the potentials @y p(x), @y p(x) and
Oy () by the integrals

O () = fdw, ),
@Wy(m—_—gcbw(x,y)dy(y)

and
- #(x)=JQ3W(x, Ydpy)

respectively.

Let 9({; be the set of all solutions % in an open set UCR” of 4,u=0
or 4,_u+0u/0x,=0. The sheaf 4 ; U—JI(, satisfies Bauer’s axioms
and then R" is a harmonic space associated with the above sheaf 4.
In this case, all constants are harmonic. In the case of 4,u=0, all
open balls

Ba,r= {x=(x1a Ly =00y xn) € Rn;

( Z"‘_, (xi—ai)z) m(r for any a=(a,, - - -, a,) and 'r>0}
i=1

from a regular base and in the case of 4,_,u+0u/0x,=0, all cones
n-1

v 1/2
A?: {93=(x1y Lgy * * ‘xn) € Rn; ( Z: (xi—'a/i)z) Ly — Oy Oy <, <an+/r9

i=1
for any a=(a,,a,, - - -, a,) and 1">0}

from a regular base. We denote by p the harmonic measure for any
regular open set V and any x ¢ V. Especially, it must remark that
the support Sy of harmonic measure p} in the case of V=47;“ is the
compact set

Spl=0VN{yeR"; y,2x.},
where 0V is the boundary of V. In the axiomatic theory, a numerical
function S(x) in an open set U is called superharmonic if S(x) satisfies
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the following conditions; 1) —co <S(®)< + oo in U, 2) S(x) is lower
semi-continuous in U, 3) S(x) takes finite value in a dense subset of U

and 4) S(x)g‘[S(y)dﬂL’(’y) forany Vin U and any e V.

The following lemma is proved by H. Bauer [3] and J. L. Doob [5].

Lemma 1. If p is a positive Radon measure with compact sup-
port, then the potentials @y p(x) and - p(x) are superharmonic in R".
The minimum principle is the most important property of the super-
harmonic function [3].

Lemma 2. Suppose that all constants are harmonic. Let Ubea
compactification of a harmonic space U and S(x) a superharmonic
function in U. If it holds that lim inf S(x)=0 for all ye U —~U, then

z-y
we have S(x)=0 in U.

It is well known that @, and @, are non-negative S-kernel and,
now, on the base of Lemmas 1 and 2, we can prove that both kernels
are T-kernel.

Lemma 3. The kernel @y is a T-kernel and, for any compact set
K, the set E is identified with the whole space R*.

Proof. For any compact set K, we take any point z, of R* and
any relatively compact open set U, which contains K and of which the
boundary 0U does not contain xz,. ®@y(x,¥) being positive and con-
tinuous if vy and Uy compact, there exist the following minimum
and maximum values,

min @y (2, ¥Y)=a >0 for any ye Uy
max Oy(x, y)=p>0 for any xe K and yc 0Ux
Choosing such a suitable positive constant My that Mza>p, we have
the following inequality,
M@ (0, ¥) = Dy, y) for any z ¢ K and any y € 0Uy.
For any z € K, the function M@, (x,, y) —®y(z,y) is superharmonic in
CUy and it holds that

lim inf{M @ y(z,, ¥) — Dy (%, ¥)} =0 for any z e CNUK—CUK,

Y-z
where CUy is a compactification of CU,. Owing to Lemma 2, we
have
M@y, Y =Oy(x,y) for any z ¢ K and y ¢ CUy.
This shows that @y is a T-kernel. In this proof, z, is an arbitrary
point of R". So, for any compact set K, E; is identified with the
whole space R”.
Lemma 4. The kernel @y is a T-kernel.

Put ax=min{the n-th coordinate of x} for any compact set K.
2€EK

Then, for a compact set K, E contains the following set,
Fr={x=(2,2,, ---,2,) e R"; 2,<bg for any by <ag}.



958 T. KAYANO and S. OGAWA [Vol. 46,

Proof. For any compact set K, we take any point ¢, of F';, and
any relatively compact open set Uz DK of which the closure Uy is dis-
jointed with Fr. @y (k, ) is positive and continuous for any ¥ € Uy
and éiw(w, y) is continuous and not identically zero for any « < K and
any yc0oUg, so there exist the following minimum and maximum
values,

min @y (2, »=r>0 for any yeoUg

max Gy (x, y) =58>0 for any xc¢ K and any yc0Ux
If we choose such a positive constant My as My =0, then we have the
following inequality,

MKé)W(xK, y)géw(x, Y) for any z ¢ K and any y c 0Ug.

By Lemma 1, @, (2, y) is superharmonic in R"” and, for any xc K,
&4 (%, ¥) is harmonic in C Uy, because it holds that 4,_ 0y + 00y [0Y,=0
in CUg. Owing to Lemma 2, we have
deviw(xK, Y =Dy (2, y) for any x¢ K and any ye CUg
Preceding proof is valid for any point z; of Fg, so E; contains the
set F'x but it must remark that E'; does not contain the set
{(x=@, %, - -+, %) € B*; ®y2dy for any dg>cgl,

where ¢, denotes max {the n-th coordinate of x}.
rEK

Now we have the following characterization of the families G*(®y)
and G*(Dy).

Theorem 2. In order that a non-negative measure p is an ele-
ment of G*(Dy) (resp. G*(Dy)), it is necessary and sufficient that for
any compact seg K, there exist at least such a point xx of Ey that
Oyp(xg) (resp. Oy pu(ry)) s finite.

Proof. By Lemmas 3 and 4, @, and @, are T-kernel and E; con-
tains an open set. For the kernel @, (resp. @), any open set U con-
tains the support S4 of a positive measure A of F*(@y) (resp. F*(Dy)).
For instance, we can take as the above A4 a harmonic measure g} of
which the support Sy7 is contained by U. Applying Theorem 1, we
have immediately Theorem 2.

Remark. For the Newtonian kernel @,, H. Cartan [4] gave the
following well known result; In order that a positive measure g is an
element of G*(®@y), it is necessary and sufficient that the potential
Oy p(x) is not identically infinity.

The following example shows that the above result does not hold
for the kernel @4. Let K be a compact set containing an open set in
R" and D an unbounded set {x=(x,, x,, - - -, ®,) ¢ R*; b<x,<c for any
b and ¢ such as ax<b<c} where Gx=Max {the n-th coordinate of x}.

re

Denote by f(y) the positive function 1/min & (%, y) for any y of D and
z€EK
by ¢ a measure with the density function f(y). Then the potential
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(13W p(x) is plus infinity in K but zero at any point = of the set
{x=(,, @y, - - -2,) € R"; ¢<z,}. Consequently, the potential d5W p(x) is
not identically plus infinity but is not an element of G*(@y), because
it holds that

jéwﬂdlz + oo

for a positive measure A of F'*(dy) of which the support S, is contained
by K.
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