218. On a Characterization of a Potential Theoretic Measure

By Takasi KAYANO*) and Shirô OGAWA**)
(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1970)

Introduction. In the first place, G. Anger [1] pointed out that continuous potentials play an important role in the theory of potential. We are concerned with a kernel $\phi(x,y)$ with continuous potentials in a locally compact space. In the case, we can define a certain family of potential theoretic positive measures $G^+(\phi)$ of which the adjoint potentials are integrable by all measures generating continuous potentials. The aim of this paper is to characterize the family of measures $G^+(\phi)$, which answers at the same time for a question posed by G. Anger [2] in the case that ϕ are Newtonian kernel Φ_N and a kernel Φ_W associated with the fundamental solution of the heat equation. For the Newtonian kernel Φ_N , H. Cartan [4] gave the following well known result; In order that a positive measure μ is an element of $G^+(\Phi_N)$, it is necessary and sufficient that the potential of μ is not identically infinity. But the above result does not hold for the kernel Φ_W and then we must find another characterization.

1. Notations and definitions. Let Ω be a locally compact Hausdorff space and $\phi(x,y)$ a measurable function in $\Omega \times \Omega$. The kernel $\check{\phi}(x,y)$ defined by $\check{\phi}(x,y) = \phi(y,x)$ is called the adjoint kernel. Setting $\check{\phi}^+(x,y) = \sup(\phi(x,y),0)$ and $\phi^-(x,y) = -\inf(\phi(x,y),0)$, we can denote $\phi(x,y) = \phi^+(x,y) - \phi^-(x,y)$. The ϕ -potential of a positive Radon measure μ in Ω is defined by

$$\phi\mu(x) = \int_{0}^{x} \phi(x, y) d\mu(y),$$

provided that $\phi \mu^+(x)$ and $\phi \mu^-(x)$ are not infinity at the same time. The adjoint potential $\check{\phi}\mu(x)$ is defined by the analogous way. $\phi(x,y)$ is called S-kernel if there exists at least such a positive measure λ that the support $S\lambda$ is compact and the potentials $\phi\lambda^+(x)$ and $\phi\lambda^-(x)$ are continuous in Ω . In the case that $\phi(x,y)$ is S-kernel, we can consider the following classes of measures.

$$F^+(\phi) = \{\lambda; \lambda \geq 0, S\lambda \ compact, \ \phi \lambda^+(x) \ and \ \phi \lambda^-(x) \ continuous \ in \ \Omega\}$$

$$G^+(\phi) = \Big\{\mu; \ \mu \geq 0, \int^* \check{\phi} \mu^+ d\lambda \ and \int^* \check{\phi}^- \mu d\lambda < +\infty \ for \ any \ \lambda \in F^+(\phi)\Big\}.$$

$$\phi(x,y) \ \text{is called} \ T\text{-kernel if} \ \phi(x,y) \ \text{is non-negative} \ S\text{-kernel and for}$$

^{*)} Faculty of Literature and Science, Shimane University.

^{**)} Department of Engineering, Kobe University.

any compact set K, there exist such a point x_K in Ω , a relatively compact open set U_K containing K and a positive constant M_K depending on x_K and U_K that $\check{\phi}(x,y) \leq M_K \check{\phi}(x_K,y)$ for any x of K and any y of CU_K , where CU_K denotes the complementary set of U_K . For a T-kernel ϕ and a compact set K, we shall denote by E_K the set of the all points x_K with the above properties.

2. Characterization of the family $G^+(\phi)$.

Theorem 1. Suppose that $\phi(x,y)$ is a T-kernel in Ω . If a non-negative measure μ is such a measure that, for any compact set K in Ω , there exists a point x_K in E_K that $\check{\phi}\mu(x_K) < +\infty$, μ is an element of $G^+(\phi)$. If for any compact set K there exists a positive measure λ of $F^+(\phi)$ of which the support $S\lambda$ is contained by E_K , then the converse holds.

Proof. As the support $S\lambda$ is compact for any λ of $F^+(\phi)$ and the kernel $\phi(x,y)$ is T-kernel, for the compact set $S\lambda$, there exist such a point x_{λ} in Ω , a relatively compact open set U_{λ} containing $S\lambda$ and a positive constant M_{λ} depending on x_{λ} and U_{λ} that

 $\check{\phi}(x,y) \leq M_{\lambda} \check{\phi}(x_{\lambda},y)$ for any x of $S\lambda$ and any y of CU_{λ} . Let $\mu_{U_{\lambda}}$ and $\mu_{CU_{\lambda}}$ be the restrictions of μ on the set U_{λ} and CU_{λ} respectively. Then we have

$$\int_{0}^{*} \check{\phi} \mu d\lambda = \int_{0}^{*} \phi \lambda d\mu_{U_{\lambda}} + \int_{0}^{*} \phi \lambda d\mu_{CU_{\lambda}}.$$

 U_{λ} being relatively compact and $\phi\lambda$ continuous in Ω , the first integral of the right hand side is finite. If x_{λ} is such a point that $\phi_{\mu}(x_{\lambda}) < +\infty$, the second integral is also finite, because we have

$$\int_{-\infty}^{\infty} \phi \lambda d\mu_{CU_{\lambda}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \check{\phi}(x, y) d\mu_{CU_{\lambda}}(y) d\lambda(x)$$

$$\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} M_{\lambda} \check{\phi}(x_{\lambda}, y) d\mu_{CU_{\lambda}}(y) d\lambda(x)$$

$$\leq M_{\lambda} \int_{-\infty}^{\infty} \check{\phi}_{\mu}(x_{\lambda}) d\lambda(x)$$

$$\leq +\infty$$

Consequently, if the assumptions are fulfiled, the integral $\int_{-\infty}^{*} \check{\phi} \, \mu d\lambda$ is finite for any λ of $F^+(\phi)$, that is, μ is an element of $G^+(\phi)$. Suppose that μ is an element of $G^+(\phi)$. If there exists such a compact set K that $\check{\phi}_{\mu}(x_K) = +\infty$ for all x_K of E_K , we have, for a positive measure λ of $F^+(\phi)$ of which the support $S\lambda$ is contained by E_K ,

$$\int^{*}\!\!\check{\phi}_{\scriptscriptstyle\mu}d\lambda\!=\!+\!\infty$$
 ,

which is contradictory.

Let $\varphi_N(x)$ and $\varphi_W(x)$ be the fundamental solutions of $\Delta_n u = 0$ and $\Delta_{n-1} u - \partial u / \partial x_n = 0$ respectively, where Δ_n denotes the Laplacian in the

n-dimensional Euclidian space \mathbb{R}^n . We define the following two kernels in \mathbb{R}^n ,

$$egin{aligned} arPhi_N(x,y) \ &= arphi_N(x-y) = egin{cases} rac{1}{(n-2)\omega_n} rac{1}{|x-y|^{n-2}} \ &+ \infty \end{cases} & ext{for } x
eq y \ & ext{for } x = y \end{aligned}$$

where ω_n is the surface area of the unit ball in $R^n(n \ge 3)$ and

 $\Phi_W(x,y)$

$$= \varphi_{W}(x-y) = \begin{cases} \left(\frac{1}{2\sqrt{\pi(x_{n}-y_{n})}}\right)^{n-1} \exp\left[-\frac{\sum_{i=1}^{n-1}(x_{i}-y_{i})^{2}}{4(x_{n}-y_{n})}\right] & \text{for } x_{n} > y_{n} \\ 0 & \text{for } x_{n} \leq y_{n} \end{cases}$$

where x_i is the *i*-th coordinate of $x = (x_1, x_2, \dots, x_n)$.

The adjoint kernel $\check{\Phi}_W$ is defined by $\check{\Phi}_W(x,y) = \Phi_W(y,x)$. Given a positive Radon measure μ , we define the potentials $\Phi_N \mu(x)$, $\Phi_W \mu(x)$ and $\check{\Phi}_W \mu(x)$ by the integrals

$$\Phi_N \mu(x) = \int \Phi_N(x, y) d\mu(y),$$

$$\Phi_W \mu(x) = \int \Phi_W(x, y) d\mu(y)$$

and

$$\check{\phi}_{W}\mu(x) = \int \check{\phi}_{W}(x, y) d\mu(y)$$

respectively.

Let \mathcal{H}_U be the set of all solutions u in an open set $U \subset \mathbb{R}^n$ of $\Delta_n u = 0$ or $\Delta_{n-1}u + \partial u/\partial x_n = 0$. The sheaf \mathcal{H} ; $U \to \mathcal{H}_U$ satisfies Bauer's axioms and then \mathbb{R}^n is a harmonic space associated with the above sheaf \mathcal{H} . In this case, all constants are harmonic. In the case of $\Delta_n u = 0$, all open balls

$$B_{a,r} = \left\{ x = (x_1, x_2, \dots, x_n) \in R^n ; \right.$$

$$\left(\sum_{i=1}^n (x_i - a_i)^2 \right)^{1/2} \langle r \text{ for any } a = (a_1, \dots, a_n) \text{ and } r > 0 \right\}$$

from a regular base and in the case of $\Delta_{n-1}u + \partial u/\partial x_n = 0$, all cones $\check{\Delta}_r^a = \left\{x = (x_1, x_2, \cdots x_n) \in R^n ; \left(\sum\limits_{i=1}^{n-1} (x_i - a_i)^2\right)^{1/2} < x_n - a_n, \ a_n < x_n < a_n + r, \right\}$

for any
$$a=(a_1, a_2, \cdots, a_n)$$
 and $r>0$

from a regular base. We denote by μ_x^v the harmonic measure for any regular open set V and any $x \in V$. Especially, it must remark that the support $S\mu_x^v$ of harmonic measure μ_x^v in the case of $V = \check{\Delta}_r^a$ is the compact set

$$S\mu_x^{\scriptscriptstyle V}\!=\!\partial V\cap\{y\in R^n\,;\,y_n\!\ge\!x_n\}$$
,

where ∂V is the boundary of V. In the axiomatic theory, a numerical function S(x) in an open set U is called superharmonic if S(x) satisfies

the following conditions; 1) $-\infty < S(x) \le +\infty$ in U, 2) S(x) is lower semi-continuous in U, 3) S(x) takes finite value in a dense subset of U and 4) $S(x) \ge \int S(y) d\mu_x^{\nu}(y)$ for any V in U and any $x \in V$.

The following lemma is proved by H. Bauer [3] and J. L. Doob [5].

Lemma 1. If μ is a positive Radon measure with compact support, then the potentials $\Phi_N \mu(x)$ and $\check{\Phi}_W \mu(x)$ are superharmonic in R^n . The minimum principle is the most important property of the superharmonic function [3].

Lemma 2. Suppose that all constants are harmonic. Let \tilde{U} be a compactification of a harmonic space U and S(x) a superharmonic function in U. If it holds that $\liminf_{x\to y} S(x) \ge 0$ for all $y \in \tilde{U} - U$, then we have $S(x) \ge 0$ in U.

It is well known that Φ_N and Φ_W are non-negative S-kernel and, now, on the base of Lemmas 1 and 2, we can prove that both kernels are T-kernel.

Lemma 3. The kernel Φ_N is a T-kernel and, for any compact set K, the set E_K is identified with the whole space R^n .

Proof. For any compact set K, we take any point x_0 of R^n and any relatively compact open set U_K which contains K and of which the boundary ∂U_K does not contain x_0 . $\Phi_N(x,y)$ being positive and continuous if $x \neq y$ and ∂U_K compact, there exist the following minimum and maximum values,

$$\min \Phi_N(x_0, y) = \alpha > 0$$
 for any $y \in \partial U_K$
 $\max \Phi_N(x, y) = \beta > 0$ for any $x \in K$ and $y \in \partial U_K$

Choosing such a suitable positive constant M_K that $M_K \alpha \ge \beta$, we have the following inequality,

 $M_{\scriptscriptstyle K}\Phi_{\scriptscriptstyle N}(x_{\scriptscriptstyle 0},y)\!\geq\!\Phi_{\scriptscriptstyle N}(x,y)$ for any $x\in K$ and any $y\in\partial U_{\scriptscriptstyle K}$. For any $x\in K$, the function $M_{\scriptscriptstyle K}\Phi_{\scriptscriptstyle N}(x_{\scriptscriptstyle 0},y)-\Phi_{\scriptscriptstyle N}(x,y)$ is superharmonic in $C\bar U_{\scriptscriptstyle K}$ and it holds that

$$\liminf_{y \to z} \{M_K \Phi_N(x_0, y) - \Phi_N(x, y)\} \geqq 0 \text{ for any } z \in \widetilde{C} \overline{U}_K - C \overline{U}_K,$$

where \widetilde{CU}_{K} is a compactification of $C\bar{U}_{K}$. Owing to Lemma 2, we have

$$M_K \Phi_N(x_0, y) \ge \Phi_N(x, y)$$
 for any $x \in K$ and $y \in CU_K$.

This shows that Φ_N is a *T*-kernel. In this proof, x_0 is an arbitrary point of R^n . So, for any compact set K, E_K is identified with the whole space R^n .

Lemma 4. The kernel Φ_w is a T-kernel.

Put $a_K = \min_{x \in K} \{the \ n\text{-}th \ coordinate of } x\}$ for any compact set K.

Then, for a compact set K, E_K contains the following set,

$$F_K = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n ; x_n \leq b_K \text{ for any } b_K < a_K\}.$$

Proof. For any compact set K, we take any point x_K of F_K and any relatively compact open set $U_K \supset K$ of which the closure \bar{U}_K is disjointed with F_K . $\check{\phi}_W(x_K,y)$ is positive and continuous for any $y \in \partial U_K$ and $\check{\phi}_W(x,y)$ is continuous and not identically zero for any $x \in K$ and any $y \in \partial U_K$, so there exist the following minimum and maximum values,

 $\min \check{\Phi}_W(x_K, y) = \gamma > 0$ for any $y \in \partial U_K$ $\max \check{\Phi}_W(x, y) = \delta > 0$ for any $x \in K$ and any $y \in \partial U_K$

If we choose such a positive constant M_K as $M_K \gamma \ge \delta$, then we have the following inequality,

 $M_K \check{\Phi}_W(x_K,y) \geq \check{\Phi}_W(x,y)$ for any $x \in K$ and any $y \in \partial U_K$. By Lemma 1, $\Phi_W(x_K,y)$ is superharmonic in R^n and, for any $x \in K$, $\check{\Phi}_W(x,y)$ is harmonic in $C\bar{U}_K$, because it holds that $\Delta_{n-1}\check{\Phi}_W + \partial \check{\Phi}_W / \partial y_n = 0$ in $C\bar{U}_K$. Owing to Lemma 2, we have

 $M_{\scriptscriptstyle K} \check{\Phi}_{\scriptscriptstyle W}(x_{\scriptscriptstyle K},y) \! \ge \! \Phi_{\scriptscriptstyle W}(x,y)$ for any $x \in K$ and any $y \in CU_{\scriptscriptstyle K}$ Preceding proof is valid for any point $x_{\scriptscriptstyle K}$ of $F_{\scriptscriptstyle K}$, so $E_{\scriptscriptstyle K}$ contains the set $F_{\scriptscriptstyle K}$ but it must remark that $E_{\scriptscriptstyle K}$ does not contain the set

 $\{x\!=\!(x_1,x_2,\cdots,x_n)\!\in\!R^n\;;\;x_n\!\!\geq\!d_K\;for\;any\;\;d_K\!>\!c_K\},$ where c_K denotes $\max_{x\in K}\{the\;n\text{-}th\;coordinate\;of\;x\}.$

Now we have the following characterization of the families $G^+(\Phi_N)$ and $G^+(\Phi_W)$.

Theorem 2. In order that a non-negative measure μ is an element of $G^+(\Phi_N)$ (resp. $G^+(\Phi_W)$), it is necessary and sufficient that for any compact set K, there exist at least such a point x_K of E_K that $\Phi_N \mu(x_K)$ (resp. $\check{\Phi}_W \mu(x_K)$) is finite.

Proof. By Lemmas 3 and 4, Φ_N and Φ_W are T-kernel and E_K contains an open set. For the kernel Φ_N (resp. Φ_W), any open set U contains the support $S\lambda$ of a positive measure λ of $F^+(\Phi_N)$ (resp. $F^+(\Phi_W)$). For instance, we can take as the above λ a harmonic measure μ_x^V of which the support $S\mu_x^V$ is contained by U. Applying Theorem 1, we have immediately Theorem 2.

Remark. For the Newtonian kernel Φ_N , H. Cartan [4] gave the following well known result; In order that a positive measure μ is an element of $G^+(\Phi_N)$, it is necessary and sufficient that the potential $\Phi_N \mu(x)$ is not identically infinity.

The following example shows that the above result does not hold for the kernel Φ_W . Let K be a compact set containing an open set in R^n and D an unbounded set $\{x = (x_1, x_2, \dots, x_n) \in R^n ; b < x_n < c \text{ for any } b \text{ and } c \text{ such as } a_K < b < c\}$ where $a_K = \max_{x \in K} \{the \text{ } n\text{-}th \text{ coordinate of } x\}$.

Denote by f(y) the positive function $1/\min_{x \in K} \Phi_W(x, y)$ for any y of D and by μ a measure with the density function f(y). Then the potential

 $\check{\Phi}_W \mu(x)$ is plus infinity in K but zero at any point x of the set $\{x = (x_1, x_2, \dots x_n) \in \mathbb{R}^n \; ; \; c \leq x_n\}$. Consequently, the potential $\check{\Phi}_W \mu(x)$ is not identically plus infinity but is not an element of $G^+(\Phi_W)$, because it holds that

$$\int \! \check{\Phi}_W \mu d\lambda = +\infty$$

for a positive measure λ of $F^+(\Phi_w)$ of which the support S_λ is contained by K.

References

- [1] G. Anger: Sur le rôle des potentiels continues dans les fondements de la théorie du potentiel. Sém. de théorie du potentiel, No. 3 (1957-1958).
- [2] —: Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie. I. Deutsche Akad. d. Wiss., Berlin (1965).
- [3] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Springer-Verlag (1966).
- [4] H. Cartan: Théorie générale du balayage en potentiel newtonien. Ann. Univ. Grenoble, **22** (1946).
- [5] J. L. Doob: A probability approach to the heat equation. Trans. Amer. Math. Soc., 80 (1955).