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(Comm. by Kinjir6 KUNUGI, M. . A., Nov. 12, 1970)

Introduction. In the first place, G. Anger [1] pointed out that
continuous potentials play an important role in the theory of potential.
We are concerned with a kernel (x, y)with continuous potentials in
a locally compact space. In the case, we can define a certain amily
o potential theoretic positive measures G/() of which the adjoint
potentials are integrable by all measures generating continuous poten-
tials. The aim of this paper is to characterize the family of measures
G/(), which answers at the same time or a question posed by
G. Anger [2] in the case that are Newtonian kernel ) and a kernel
g) associated with the fundamental solution of the heat equation.
For the Newtonian kernel , H. Cartan [4] gave the ollowing well
known result; In order that a positive measure f is an element of
G/(), it is necessary and sufficient that the potential of / is not
identically infinity. But the above result does not hold for the kernel
) and then we must find another characterization.

1. Notations and definitions. Let /2 be a locally compact Haus-
dorf space and (x, y) a measurable unction in 9/2. The kernel
(x, y) defined by (x, y)-(y, x) is called the adjoint kernel. Setting

+(x, y)-sup((x, y), 0) and -(x, y)- -inf((x, y), 0), we can denote
(x, y)=/(x, y)--(x, y). The gl-potential of a positive Radon meas-

ure/ in/2 is defined by

provided that /() and -(z) are not infinity at the same time. he
adjoint potential () is defined by the analogous way. (, g) is
called S-kernel if there exists at least sueh a positive measure 2 that
the support $2 is compact and the potentials 2/(x) and 2-(x) are
continuous in D. In the ease that (x, ) is S-kernel, we can consider
the followin classes of measures,

F+()={2;2>=0,$2 compact, 2+(x) and 2-(x) continuous in }

G+() fl f>=O, [+d and /d < / c for any e F+()

(x, y) is called T-kernel if (x, y) is non-negative S-kernel and for
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any compact set K there exist such a point x in tg, a relatively com-
pact open set U containing K and a positive constant M depending
on xK and UK that (x,y)<=M(x, y) or any x of K and any y of
CU, where CU denotes the complementary set o U. For a
T-kernel and a compact set K, we shall denote by E the set o the
all points x with the above properties.

2. Characterization of the family G+().
Theorem 1. Suppose ha (x,y) is a T-ernel in . If a non-

negative measure is such a measure that, for any compact set K in, there exists a point x inE that (x) + is an element of
G+(). If for any compact set K there exists a positive measure of
F+() of which the support S2 is contained by E, then the converse
holds.

Proof. As the support $2 is compact or any 2 of F+() and the
kernel (x, y) is T-kernel, for the compact set $2, there exist such a
point x in 9, a relatively compact open set U containing $2 and a
positive constant M depending on x and U that

(x, y)M(x, y) or any x o $2 and any y o CU.
Let and Zc be the restrictions o on the set U and CU re-
spectively. Then we have

U being relatively compact and 2 continuous in 9, the first integral
of the right hand side is finite. If x is such a point that (x) +,
the second integral is also finite, because we have

M .(x)d2(x)
+.

Consequently, if the assumptions are fulfiled, the integral d2. is

finite for any 2 of N+(), that is, is an element of G*(). Suppose
that is an element of G*(). If there exists such a compact set K
that (z)= + for all of N, we have, for a positive measure 2
of P+() of whieh the support $2 is contained by N,

+,

which is contradictory.
Let (z) and () be the fundamental solutions of A=0 and

A_--8/Oz=O respectively, where A denotes the Laplaeian in the
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n-dimensional Euclidian space R. We define the ollowing two kernels
in R,
(x,y)

1 1 for x=/::y
=(x--y)= (n--2)w Ix--y[-+c for x--y

where (o is the surface area of the unit ball in Rn(n3) and
(x, y)

{( 1 )- [ - ]-- or XnYn
(f(x y) 2/zr(Xn y)

exp (x--y)
4(x--y)

0 for x <:y
where x is the i-th coordinate of x=(x, x,..., x=).

The adjoint kernel w is defined by w(X, y)=c(y, x). Given a
positive Radon measure/, we define the potentials Cx/(x), /(x) and
w/(x) by the integrals

/(x)-I(x, y)d/(y),

w/(x)-- Iqw(X, y)df(y)

and

qwt(x) w(X, y)d,a(y)

respectively.
Let q( be the set of all solutions u in an open set UR of Au=0

or An_U+3U/3X,=O. The sheaf ; U-*q( satisfies Bauer’s axioms
and then R is a harmonic space associated with the above sheaf q(.

In this case, all constants are harmonic. In the case of Au=0, all
open balls

B,-- tx (x, x., ..., x) e R

( _. (x--a))/r for an --(, ..., an)and r>O}
from a regular base and in the ease ot A_+O/O=O, all cones

A x= (x, x, x) e R (x--a) <x--a, a<Xn <a+ r,
i--1

any a- (a, a, ., a) and r> 0for

rom a regular base. We denote by/ the harmonic measure for any
regular open set V and any x e V. Especially, it must remark that
the support S/ of harmonic measure / in the case of V-- is the
compact set

S[-3V{yeR; y>x}_
where 3V is the boundary of V. In the axiomatic theory, a numerical
function S(x) in an open set U is called superharmonic if S(x) satisfies
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the ollowing conditions; 1) - <S(x)<= / in U, 2) S(x) is lower
semi-continuous in U, 3) S(x) takes finite value in a dense subset of U

and 4) S(x).IS(y)dl(y) for any V in U and any x e V.

The ollowing lemma is proved by tI. Bauer [3] and J. L. Doob [5].
Lemma 1. If l is a positive Radon measure with compact sup-

port, then the potentials qNtt(x) and wf(x) are superharmonic in Rn.
The minimum principle is the most important property of the super-
harmonic function [3].

Lemma 2. Suppose that all constants are harmonic. Let U be a
compactification of a harmonic space U and S(x) a superharmonic
function in U. If it holds that lira inf S(x) >__0 for all y e ]-U, then

we have S(x) >= 0 in U.
It is well known that and are non-negative S-kernel and,

now, on the base of Lemmas 1 and 2, we can prove that both kernels
are T-kernel.

Lemma :. The kernel is a T-kernel and, for any compact set
K, the set EK is identified with the whole space Rn.

Proof. For any compact set K, we take any point x0 of R and
any relatively compact open set U which contains K and of which the
boundary 3U does not contain xo. (x, y) being positive and con-
tinuous if x :/: y and 3U compact, there exist the following minimum
and maximum values,

min (x0, y)-a>0 or any y e
max (x,y)-0 or any x e K and y eU

Choosing such a suitable positive constant M that Ma__>, we have
the 2ollowing inequality,

M(x0, y)(x, y) or any x e K and any y e 3U.
For any x e K, the unction M(Xo, y)--(x, y) is superharmonic in
CU and it holds that

lim inf{M(x, y)--(x, y)} >__0 or any z e C-C,
y---

where CU is a compactification of C. Owing to Lemma 2, we
have

M(Xo, y)O(x, y) for any x e K and y e CU.
This shows that is a T-kernel. In this proof, x0 is an arbitrary
point o R. So, or any compact set K, E is identified with the
whole space R.

Lemma 4. The kernel qw is a T-kernel.
Put a-min{the n-th coordinate of x} for any compact set K.

Then, for a compact set K, E contains the following set,
F-{x= (x, x, ..., x) e R x<=b for any ba}.
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Proof. For any compact set K, we take any point x of F and
any relatively compact open set U K of which the, closure UE is dis-
jointed with F. (x, y) is positive and continuous for any y e 3U
and (x, y) is continuous and not identically zero for any x e K and
any y e 3U, so there exist the following minimum and maximum
values,

min (x, y)--y >0 for any y eU
max (x,y)-O for any x e K and any y e 3U

If we choose such a positive constant M as My__>, then we have the
following inequality,

M(x:, y)>=(x, y) for any x e K and any y e 3U.
By Lemma 1, (x, y) is superharmonic in R and, for any x e K,
(x, y) is harmonic in C, because it holds that
in CU. Owing to Lemma 2, we have

M:qw(X:, y)>= q(x, y) for any x e K and any y e CU:
Preceding proof is valid for any point x of F, so E contains the
set F but it must remark that E does not contain the set

{x-- (x, x, ..., Xn) e R X dE for any d c},
where c denotes max {the n-th coordinate of x}.

K

Now we have the ollowing characterization o the amilies G/()
and G/(O).

Theorem 2. In order that a non-negative measure is an ele-
ment of G/() (resp. G/()), it is necessary and sulcient that for
any compact set K, there exist at least such a point x of E that
t(x) (resp. [(x)) is finite.

Proof. By Lemmas 3 and 4, and are T-kernel and E con-
rains an open set. For the kernel (resp. ), any open set U con-
rains the support $2 of a positive measure 2 of F/() (resp. F+()).
For instance, we can take as the above 2 a harmonic measure / of
which the support S/ is contained by U. Applying Theorem 1, we
have immediately Theorem 2.

Remark. For the Newtonian kernel , H. Cartan [4] gave the
ollowing well known result; In order that a positive measure/ is an
element o G/(), it is necessary and sufficient that the potential
/(x) is not identically infinity.

The ollowing example shows that the above result does not hold
for the kernel . Let K be a compact set containing an open set in
R and D an unbounded set {x-(x, x, .., x) e R bx C for any
b and c such as abc} where a-max {the n-th coordinate of x}.

Denote by f(y) the positive unction 1/min (x, y) or any y of D and

by / a measure with the density 2unction f(y). Then the potential
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wl(x) is plus infinity in K but zero at any point x of the set
{x=(x,x, ...x) e R.; c<=x}. Consequently, the potential wl(x) is
not identically plus infinity but is not an element of G/(w), because
it holds that

W -" (:
or a positive measure 2 of F/() of which the support S is contained
by K.
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