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60. An Extension o an Integral. I

By Masahiro TAKAHASHI
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjir5 KUNUGI, M. $. A., March 12, 1971)

1. Introduction. An integral a with respect to an integral
structure F was defined in the author [3]. An example of integrals of
this type is 1-dimensional (or generally n-dimensional) Lebesgue inte-
gral of bounded measurable functions over measure-finite measurable
sets (see Introduction in [1]). In this case, however, we can not deal
with such integrals as

d- (x_<O)
in our way. We shall extend in this paper the integral a to an ’integral’
and then integrals of the above type may be dealt in terms

2. Extension theorems. Let F (A , ?, () be an integral
structure and a an integral with respect to F.

Denote by /, , and J the total ring, the total unctional group,
and the third group, respectively, ot A and let 3 be the a-ring generated
by q.

Let /2 be the set of all elements (X, f,/) of/ satisfying
the ollowing conditions"

1) There exist X e , i= 1, 2, ., such that Xf e for any i and
such that X$X

2) If X 3, X)f e g?, or i-- 1, 2, ., and if X)$X(i-oo),
where k--1, 2, then or any neighborhood V o 0 e J there exists a posi-
rive integer n such that a(X’, X)uf [)--a(X, X)f /) e V or any
l>_n and m>_n.
The set 9 defined above will be called the carrier o F.

Let us assume the following"
1) a(X, g,/)--0 (ioo) for X 3, i--1, 2, ..., such that X$O

(i-oo), for any g e and
2) is a pseudo-a-ring.
3) J is Hausdorff and complete.

Then we have the following theorems, which will be proved in Part II
of this paper.

Theorem 1. Under the above assumptions,
1) 3x_6’xcgc3xx.
2) For any X, Y e q, f e
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if and only if (X, Yf,/) e tO.
3) For any f e and [ e , the set (f /) {X (X, f,/) e } is

an ideal of and consequently is a pseudo-a-ring.
4) For any X e and/ e (, the set (X, [)- {f (X, f,/) 9} is

a subgroup of .
Theorem 2. There exists a unique map of t into J satisfying

the conditions"
1) is an extension of a.
2) For any X, Y e , f e , and / e , (XY, f /) e t implies

(XY, f,/)-(X, Yf,/).
3) For any f e and/ e , the map f,,(X) (X,f,/) on (f

is a measure.
Further, this map satisfies the following"

4) For any X e and/ e 0_, the map x,(f) (X,f,/) on (X,/)
is a homomorphism.

The map in Theorem 2 will be called the measure extension of a.

To show that the domain of is sufficiently large, in a sense, we
shall prove the next proposition. Note that the uniqueness of in
Theorem 2 is easily verified by means of (i), (ii), and (iv) in the proof
of the proposition.

Proposition 1. Consider the following conditions on a pair(t’,
1) [2’l . and a’ is a map of [2’ into J.
2) For any (X, f,/) e 9’, there exist X e , i-- 1, 2, ., such that

Xf e for any i and such that XdX (i-c).
3) For X e and f e such that Xf e , and for any/ e _, we

have (a) (X, f,/) e [2’ and (b) a’(X, f, t)= a(X, Xf,
4) For any f e and/ e _, (a’) the set ’(f,/)-{X (X,f,/) e 9’}

is a subring of l and (b’) the map a,(X)-a’(X, f,/) on ’(f /) is a
measure.
Then a necessary and sufficient condition for a pair (tO’, a’) to satisfy
the above conditions is to be such a pair that 9’ is a subset of tO satisfy-
ing (a) in 3) and (a’) in 4) and that a’ is the restriction of
Further, [2 satisfies (a) and (a’).

Proof. (i) The sufficiency is easily verified even if we assume
that is an arbitrary map satisfying the conditions on " 1), 2), and 3)
in Theorem 2. To prove the necessity, let us show that (ii) if (9’, a’) and
(tO’, a") both satisfy the conditions, then a’=a". For (X, f,/) e tO’ and
for Xt e , i= 1, 2, ., such that Xf e for any i and such that XdX
(i--.c), we have a’(X,f,/a)=a.,(X)=lim_.oo a,(X)-lim a’(X,f,/2)
=lim,. a(X,, X,f,/2), and this implies (ii). Next let us show that (iii)
2’ is a subset of/2. Let (X, f,/2) be an element of/2’ and suppose that
X e , X*)f !, for i= 1, 2, ., and that X)X (ioo), where k- 1,
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2. For given neighbourhood V of 0 e J, there exists a neighbourhood U
of 0eJ such that U-U V. Since lim a(X),X)f,/)=a’(X,f,/), we
have n such that a(X, X)f tt)--a’(X, f,/) e U for any i>=n. For n
=max (n,n2) and for any l>n and m>=n, we have a(X),X)f,/D-a(X),
X)f, l) e V and this implies (iii). Now let us show that a’ is the rest-
riction of . Let a" be the restriction of on 9’. Then the pair (2’,
a") satisfies the conditions and hence (ii) implies that a’--a". Finally
let us show that (iv) 9 satisfies (a) and (a’). For X e , i= 1, 2, .,
such that X$X (i-c), it follows that lim a(X,Xf,/)=lim a(X,
Xf,/)= a(X, Xf,/) and this implies that 2 satisfies (a). That tO satis-
fies (a’) follows from Theorem 1. Thus the proposition is proved.

:. Lemmas. In this section we shall give some lemmas to prove
the theorems in section 2.

Assumption 1. M is a set and l is the ring of all subsets of M.
A subring of is a pseudo-a-ring.

Let 27 be the set of all maps $, defined on the set of all positive in-
tegers N and taking values in , such that $(n) $(n+ 1) for all n e N.
Put --__ $(n) for $ e 27, and -{$15 e X} for 9X. Then we have

Lemma 1. X-- {_J--1X X e q, n-- 1, 2, ...} and is the sub-a-
ring of l generated by .

Corollary. is an ideal of X.
For X e 2 and for $ e 27, i=0, 1, ..-, k, let us define maps X$0, 05

..$ and $0+$+’" +$ of N into by
1) (Xo)(n)--X($o(n))
2) ($0$’"$)(n)-$0(n)$(n)’"$(n)
3) ($0/ $+"" / $)(n) $0(n) + $(n) /... / $(n)

for any n e N, respectively.
Lemma 2. For X e and for $i e X, i--0, 1,. ., k, we have
1) X$o e and Xo=X$o
2) o"" e Z and o" "=o""3) $$-0 (i=/=]) implies that o+1+’" + e and that o+

+...
Assumption 2. (q, , J) is an abstract integral structure [1] and

is an 2-invariant subgroup of .
Note that (, , J) is also an abstract integral structure.
For each f e , denote the sets {X IX e , Xf e } and {$]$ e X,

(n)f e or any n e N} by (f) and X(f), respectively. We can write
X(f) { e X, $(n) e (f) for any n e Y}.

Lemma :. _(g)-- and X(g)--X for any g e .
Lemma 4. For any f e , (f) is an ideal of X and is a pseudo-

a-ring.
Proof. 1) It immediately ollows that 0 e .(f)c27. 2) For
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X e (f) and for Y e 27, Corollary to Lemma 1 implies that XY
and it holds that (XY)f (XY)(Xf) e . Hence, XY e (f) for
any Xe_(f) and Ye27. 3) For X, Ye(f) such that XY=O, we
have X+ Y , (X+ Y)f=Xf+ Yf e , and thus we have X+ Y e (f).
1), 2), and 3) above imply that (f) is an ideal of . That (f) is a
pseudo-a-ring follows from the fact that X is a a-ring.

Corollary. o_(f) is an ideal of for any f e .
Lemma 5. X(f) {CJ=: X, IX, e .q(f), n= 1, 2, } for any f
Lemma 6. For any f e , X(f) is an ideal of and is a a-ring.

Proof. This ollows rom 1),2), and 3), below. 1) 0 e X(f)cX.
2) For X e X(f) and Y e 2, we have an element $ o X(f) such that
=X. That (f) is an ideal of 2 implies that (Y$)(n)--Y((n))e (f)
for each n and thus we have Y$ e X(f). Hence YX--Y--Y e X(f).
3) It holds that L)= Xn e X(f) or X, e X(f), n= 1, 2, .,., which ollows
from Lemma 5.

Corollary 1. (f) is an ideal of X(f) for any f e
Corollary 2. If f e , X e X, e X(f), and if e X, we have
1) X:eX(f)
2) :r] 2’(f)
3) ]----0 and e X(f) imply that + 7 e X(f).
Proof. For each n, we have 1) (X)(n)--X($(n))e X(f)c R(f),

2) (])(n)-- $(n)(n) e R(f)3 (f), and 3) (+])(n)- $(n)+ ](n) e (f).
Lemma 7. XY R(f) if and only if X (Yf), for any f

Xe3 and YeX.
Corollary. X$ e X(f) if and only if e X(Xf), for any f e F, X

and e X.
Lemma 8. If f e , e X(f), and if --XY for X, Y e X, then we

have an element of 2(Yf) such that -X and =Y.
Proof. Let ] be an element of X such that --X. Put

+ . Then we have $(n) e 3, which follows rom the fact that 3 is an
ideal o 2, and we have (n)--((n)--Y)U(n)c$(n+l), or each n.
This implies that $ e 2:. It ollows that (Y$)(n)-- Y($(n))- Y((n))- (n)
and this implies that -Y$. Since (n)(Yf)-((Y$)(n))f=(n)f
we have e X(Yf). Finally we have=J=: (n)-- C)=: ((](n)-- Y) t3 (n))

(CJ=: (](n) Y)) U (U=: :(n)) (CJ;=: ?(n) Y) U ( Y) U XY
=(X-Y)UXY=X.

Now put ={(, f) lf e e z(f)}. Then we have

Lemma 9. X(f)-- {XI(X, f) e 9} for any f e F.
Lemma 10. If f, e F and if e X(f3, i=1, 2, ..., k, then .
e =: X(f,).

Proof. This ollows rom Lemma 2 and Corollary 2 to Lemma 6.
Corollary 1o If f e , e X(f,), i--1, 2, k, and if ---=-.
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= X, then there exists an element of C-- X(f3 such tha$ $-X.
Corollar 2. If (X, f) e [2, i= 1, 2, ., k, then there exists an

element of

__
$(f) such that $-X.

Lemma 11. (XY,f)e2 if and only if (X, Yf)eg, for any X,YeX
and f e.

Proof. Suppose that (XY, f) e . For e X(f) such that --XY,
there exists e X(Yf) such that =X (Lemm 8), and this implies (X,
Yf) e . Conversely suppose that (X, Yf) e . Then we have e X(Yf)
such that $--X. Corollary to Lemma 7 implies that Y$ e X(f). Since

Y- Y XY, we have (XY, f) e .
Put (X)= {fl(X, f) e tO} or each X e 2;. Then we have
Lemma 12. (X) is a subgroup of for any X e $.

Proof. It sufficies to show that f-- g e (X) or f, g e (X). Corol-
lary 2 to Lemma 10 implies that there is $ e X(f) X(g) such that X.
We have (n)(f g)-- $(n)f $(n)g e or any n and thus we have (X,
f-- g) (, f-- g) e tO. Hence f-- g e (X).
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