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60. An Extension of an Integral. 1

By Masahiro TAKAHASHI
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjiré KUNUGI, M. J. A.,, March 12, 1971)

1. Introduction. An integral ¢ with respect to an integral
structure I" was defined in the author [3]. An example of integrals of
this type is 1-dimensional (or generally n-dimensional) Lebesgue inte-
gral of bounded measurable functions over measure-finite measurable
sets (see Introduction in [1]). In this case, however, we can not deal
with such integrals as

i x7t (1<)
I F@de — where fF@={x"" (0<z<1)
- 0 (x<0)

in our way. We shall extend in this paper the integral ¢ to an ‘integral’
& and then integrals of the above type may be dealt in terms of &.

2. Extension theorems. Let I'=(4; S,G,0) be an integral
structure and a an integral with respect to I'.

Denote by M, <F, and J the total ring, the total functional group,
and the third group, respectively, of 4 and let S be the o-ring generated
by S.

Let 2 be the set of all elements (X, f, ) of M X FXxQ satisfying
the following conditions:

1) Thereexist X; ¢ S,1=1,2, ..., such that X,f ¢ G for any ¢ and
such that X1 X (i—o0).

2) If XPeS,XPfeg, for i=1,2,..., and if X®1X({{—o0),
where k=1, 2, then for any neighborhood V of 0 ¢ J there exists a posi-
tive integer n such that ¢(X{, X{Puf, )—o(X2, X2 f, 1) e V for any
I=n and m=n.

The set 2 defined above will be called the carrier of I.

Let us assume the following :

) oX; 9, )0 (i—0) for X;e8,1=1,2, ..., such that X;|0
(t—o0), for any g€ G and pe Q.

2) S 1s a pseudo-c-ring.

3) J is Hausdorff and complete.

Then we have the following theorems, which will be proved in Part II
of this paper.

Theorem 1. Under the above assumptions,

1) SXGxQcRCSXIFxQ.

2) Forany X,YeS, feT, and pe(, it holds that (XY, f, 1) e 2



258 M. TAKAHASHI [Vol. 47,

if and only if (X, Y f, 1) e Q.

8) Forany fedF and peQ, the set S(f, W)={X|(X, f, 1) e 2} is
an ideal of S and consequently is a pseudo-c-ring.

4) Forany XeSand pe(Q, the set X, m)={f|(X, f, ) e} is
a subgroup of <F.

Theorem 2. There exists a unique map & of 2 into J satisfying
the conditions:

1) G is an extension of a.

2) For any X,YeS,fe%, and peQ, (XY, f, ) e implies
a(XY, f, =X, Y, ).

8) Forany feFand peQ, the map 7, (X)=6(X, f,1) on S(f, 1)
18 @ measure.

Further, this map ¢ satisfies the following :

4) Forany XeSand peQ, the map ox,,(N=5X,f,p) on 4X, )
18 @ homomorphism.

The map @ in Theorem 2 will be called the measure extension of o.

To show that the domain of & is sufficiently large, in a sense, we
shall prove the next proposition. Note that the uniqueness of ¢ in
Theorem 2 is easily verified by means of (i), (ii), and (iv) in the proof
of the proposition.

Proposition 1. Consider the following conditions on a pair(£’,0'):

1) QCHUXTFXQ and ¢’ is a map of Q' into J.

2) Forany (X, f, 1) e 2, there exist X; ¢ S,1=1,2, - - -, such that
X.f € G for any © and such that X4 X (i—oo).

8) ForXeSand feSF such that Xf e G, and for any peQ, we
have (a) (X, f, ) € 2" and (b) o'(X, f, )=0(X, X, ).

4) Forany feSF and p e, (a)) the set S'(f,p)={X|(X,f,p) € 2}

is a subring of M and (b’) the map o', (X)=0'(X, f, 1) on S'(f, 1) is a
measure.
Then a necessary and sufficient condition for a pair (£, 0’) to satisfy
the above conditions is to be such a pair that 2’ is a subset of Q satisfy-
ing (a) in 3) and (a') in 4) and that ¢’ is the restriction of & on £'.
Further, 2 satisfies (a) and ().

Proof. (i) The sufficiency is easily verified even if we assume
that & is an arbitrary map satisfying the conditions on ¢: 1), 2), and 3)
in Theorem 2. To prove the necessity, let us show that (ii) if (2’, ¢’) and
(£2’, ¢””) both satisfy the conditions, then ¢’=¢". For (X, f, pt) € £’ and
for X;e¢ S, 1=1,2, ..., such that X,f € G for any ¢ and such that X;1X
(t—c0), we have ¢’'(X, f, ) =0 (X)=1lim,_... 0} (X)=lim,_., ¢/'(X,;, [, )
=lim,.., 0(X,;, X,;f, ), and this implies (ii). Next let us show that (iii)
£’ is a subset of 2. Let (X, f, 1) be an element of £’ and suppose that
X®eS,X»fed, fori=1,2, ..., and that X{*1X ({—o0), where k=1,
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2. For given neighbourhood V of 0¢J, there exists a neighbourhood U
of 0eJ such that U—-UCV. Sincelim,.., o(X® ,XFf,)=0'(X, f, 1), we
have n, such that o(X®,X®» f, w)—0'(X, f, ) eU for any i=n,. Forn
=max (n,,n,) and for any I=n and m=n, we have s( X", X f, 1) — (X2,
X@f, p) eV and this implies (iii). Now let us show that ¢’ is the rest-
riction of . Let ¢” be the restriction of & on £’. Then the pair (£,
o'’ satisfies the conditions and hence (ii) implies that ¢’=0¢”. Finally
let us show that (iv) Q satisfies (a) and (a’). For X,¢S,i=1,2, ...,
such that X1 X (i—o0), it follows that lim,_ ., ¢(X;, X, f, ) =1lim,_.. ¢(X,,
Xf,w=0X,Xf, p) and this implies that 2 satisfies (a). That 2 satis-
fies (a’) follows from Theorem 1. Thus the proposition is proved.

3. Lemmas. In this section we shall give some lemmas to prove
the theorems in section 2.

Assumption 1. M is a set and . is the ring of all subsets of M.
A subring S of M is a pseudo-g-ring.

Let Y be the set of all maps &, defined on the set of all positive in-
tegers N and taking values in S, such that £E(n)C&(n+1) for all ne N.
Put =3, Em) for £ 3, and O={&|& ¢ 3} for 6C 3. Then we have

Lemma 1. S={Uz,X,|X,eS,n=1,2,...} and 3 is the sub-o-
ring of M generated by S.

Corollary. S is an ideal of 2.

For X ¢ ¥ and for &,¢3,1=0,1, . - -, k, let us define maps X&,, £,&,
c-&pand E+ &+ - - - +&; of N into S by

1) (X'So)(n)=X($o(n))

2) (8051‘ . &k)(’n)=§o(n)$1(n) < Er(m)

8) (&t +EXM=EM+EM+ - - - +Ex(n)
for any n ¢ N, respectively.

Lemma 2. For XeX and for £, X,1=0,1, .. -, k, we have

1) X&,¢2 and X&,=XE,

2) 6_05_1‘ * Ek e and 5051‘ : ~§k=§o§z' * Sk

8) &&,=0 (i) implies that &;+&,+ -+ + & e X and that & +&,
+ .- +€k=$0+€1+ cre +$k~

Assumption 2. (S, %, J) is an abstract integral structure [11 and
G 18 an S-invariant subgroup of .

Note that (S, G, J) is also an abstract integral structure.

For each fe &, denote the sets {X|Xe S, Xfe G} and {£|€e 3,
E(n)f e G for any n € N} by R(f) and 3(f), respectively. We can write
J(N={£1€e 2, &m) e R(f) for any n e N}.

Lemma 3. R(9)=3S and 3(g)=23 for any g < G.

Lemma 4. For any feZF, R(f) is an ideal of X and is ¢ pseudo-
o-ring.

Proof. 1) It immediately follows that 0 R(f)cSc3. 2) For
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X e R(f) and for Y ¢ 3, Corollary to Lemma 1 implies that XY e S
and it holds that (XY)f=XY)(Xf)eSGC G. Hence, XY ¢ R(f) for
any Xe R(f) and YeZX. 38) For X,Y e R(f) such that XY=0, we
have X+Yec S, X+Y)f=Xf+Yfeg, and thus we have X+ Y ¢ R(f).
1),2), and 3) above imply that R(f) is an ideal of ¥. That R(f) is a
pseudo-g-ring follows from the fact that Y is a o-ring.

Corollary. R(f) is an ideal of S for any f € <.

Lemma 5. 3(N={U7..X,| X, e R(N,n=1,2, ...} forany feF.

Lemma 6. For any f e, 3(f) is an ideal of 3 and is a o-ring.

Proof. This follows from 1),2), and 3), below. 1) 0e3(f)C 3.
2) For X e 2(f) and Y ¢ 3, we have an element & of 3(f) such that &
=X. That R(f) is an ideal of I implies that (Y&)(n)=Y(£(n)) ¢ R()
for each n and thus we have Y& e 3(f). Hence YX=YE=YE e 3(f).
3) It holds that | Jz_, X, € 2(f) for X, € 3(f), n=1,2, - - -, which follows
from Lemma 5.

Corollary 1. R(f) is an ideal of 3(f) for any fe &F.

Corollary 2. If feF, XX, £ 3(f), and if e 3, we have

D X§Ee2()

2) &nel(f)

3) &n=0 and y e 2(f) imply that &+ e J(f).

Proof. For each n, we have 1) (X&)(n)=X(£(n)) € SR(f)C R,
2) Enm)=Em)n(n) e R(NHSCT R(S), and 3) (§ +n)(W)=E&@m)+n(n) e R(S).

Lemma 7. XY e R()) if and only if X e R(Y ), for any fe <,
XeSand Yel.

Corollary. X& e 2(f) if and only if & € (X)), forany fe F,Xe X
and e X.

Lemma 8. If fe %, {e3(f), and if C=XY for X,Y € X, then we
have an element & of (Y f) such that E=X and {=YE.

Proof. Let 7 be an element of 3 such that =X. Put é=7+Yy
+{. Then we have &(n) ¢ S, which follows from the fact that S is an
ideal of 5, and we have é(n)=(np(n)—Y)UL(m)C&(n+1), for each n.
This implies that & ¢ 3. Itfollowsthat (Y&)(n)=Y(En)=Y((n)=C_{(n)
and this implies that {=Y&. Since Em)(Y H=(YE)n)f=L(n)f e G,
we have £c 3(Y f). Finally we have E=z_; Em)=\z5., (n(n)—Y)UL(n))
=z () — YNU Uz €M) = (Ui ) — UL = G~ Y) UXY
=(X-Y)UuXY=X.

Now put @={&, /)| feF,£c3(f}. Then we have

Lemma 9. 2(N={X|(X, f)e 3} for any feG.

Lemma 10. If f,eSF and if £, 3(fy), i=1,2,.-.,k, then &§&,
s e M 20D

Proof. This follows from Lemma 2 and Corollary 2 to Lemma 6.

Corollary 1. IffieF, E,e 3(f),i=1,2, -, k, andif E,=E,=- .-
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=&,=X, then there exists an element & of (., Z(f,) such that E=X.

Corollary 2. If (X,f)ef, i=1,2,---,k, then there exists an
element £ of Mk, 3(f,) such that E=X.

Lemma 11. (XY,f)e@ if and only if (X,Y)ef, forany X,YeZ
and fe.

Proof. Suppose that (XY, /) e . For { e 3(f) such that =X,
there exists & ¢ 3(Y f) such that £=X (Lemma 8), and this implies (X,
Yf)ef. Conversely suppose that (X,Y f)e . Then we have £ 3(Y f)
such that £=X. Corollary to Lemma 7 implies that Y& ¢ 3(f). Since
YE=YE=XY, we have (XY, f) e d.

Put G(X)={f|(X, f) e 2} for each X ¢ 3. Then we have

Lemma 12. G(X) is a subgroup of F for any X e .

Proof. It sufficies to show that f—ge G(X) for f, ge G(X). Corol-
lary 2 to Lemma 10 implies that there is & € 3(f) N 3(g) such that £=X.
We have Em)(f —g9)=&Em) f—&Em)g € G for any n and thus we have (X,
Ff—9)=E, f—9) ef. Hence f—ge GX).
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