60. An Extension of an Integral. I

By Masahiro Takahashi

Institute of Mathematics, College of General Education, Osaka University (Comm. by Kinjirô Kunugi, M. J. A., March 12, 1971)

1. Introduction. An integral σ with respect to an integral structure Γ was defined in the author [3]. An example of integrals of this type is 1-dimensional (or generally n-dimensional) Lebesgue integral of bounded measurable functions over measure-finite measurable sets (see Introduction in [1]). In this case, however, we can not deal with such integrals as

$$\int_{-\infty}^{\infty} f(x)dx \qquad \text{where } f(x) = \begin{cases} x^{-2} & (1 < x) \\ x^{-1/2} & (0 < x \le 1) \\ 0 & (x \le 0) \end{cases}$$

in our way. We shall extend in this paper the integral σ to an 'integral' $\bar{\sigma}$ and then integrals of the above type may be dealt in terms of $\bar{\sigma}$.

2. Extension theorems. Let $\Gamma = (\Lambda; S, \mathcal{G}, Q)$ be an integral structure and σ an integral with respect to Γ .

Denote by \mathcal{M}, \mathcal{F} , and J the total ring, the total functional group, and the third group, respectively, of Λ and let $\overline{\mathcal{S}}$ be the σ -ring generated by \mathcal{S} .

Let Ω be the set of all elements (X, f, μ) of $\mathcal{M} \times \mathcal{I} \times \mathcal{Q}$ satisfying the following conditions:

- 1) There exist $X_i \in \mathcal{S}$, $i=1,2,\cdots$, such that $X_i f \in \mathcal{G}$ for any i and such that $X_i \uparrow X$ $(i \rightarrow \infty)$.
- 2) If $X_i^{(k)} \in \mathcal{S}$, $X_i^{(k)} f \in \mathcal{G}$, for $i=1,2,\cdots$, and if $X_i^{(k)} \uparrow X(i \to \infty)$, where k=1,2, then for any neighborhood V of $0 \in J$ there exists a positive integer n such that $\sigma(X_i^{(1)}, X_i^{(1)} u f, \mu) \sigma(X_m^{(2)}, X_m^{(2)} f, \mu) \in V$ for any $l \ge n$ and $m \ge n$.

The set Ω defined above will be called the *carrier* of Γ .

Let us assume the following:

- 1) $\sigma(X_i, g, \mu) \rightarrow 0 \ (i \rightarrow \infty) \ for \ X_i \in \mathcal{S}, i=1, 2, \cdots, \ such \ that \ X_i \downarrow 0 \ (i \rightarrow \infty), \ for \ any \ g \in \mathcal{G} \ and \ \mu \in \mathcal{Q}.$
 - 2) S is a pseudo- σ -ring.
 - 3) J is Hausdorff and complete.

Then we have the following theorems, which will be proved in Part II of this paper.

Theorem 1. Under the above assumptions,

- 1) $S \times \mathcal{G} \times \mathcal{O} \subset \Omega \subset \overline{\mathcal{S}} \times \mathcal{G} \times \mathcal{O}$.
- 2) For any $X, Y \in \overline{S}$, $f \in \mathcal{F}$, and $\mu \in \mathcal{Q}$, it holds that $(XY, f, \mu) \in \mathcal{Q}$

if and only if $(X, Yf, \mu) \in \Omega$.

- 3) For any $f \in \mathcal{F}$ and $\mu \in \mathcal{Q}$, the set $\mathcal{S}(f, \mu) = \{X \mid (X, f, \mu) \in \Omega\}$ is an ideal of $\overline{\mathcal{S}}$ and consequently is a pseudo- σ -ring.
- 4) For any $X \in \overline{S}$ and $\mu \in Q$, the set $\mathcal{Q}(X, \mu) = \{f \mid (X, f, \mu) \in \Omega\}$ is a subgroup of \mathcal{F} .

Theorem 2. There exists a unique map $\bar{\sigma}$ of Ω into J satisfying the conditions:

- 1) $\bar{\sigma}$ is an extension of σ .
- 2) For any $X, Y \in \overline{S}$, $f \in \mathcal{F}$, and $\mu \in \mathcal{Q}$, $(XY, f, \mu) \in \Omega$ implies $\overline{\sigma}(XY, f, \mu) = \overline{\sigma}(X, Yf, \mu)$.
- 3) For any $f \in \mathcal{F}$ and $\mu \in \mathcal{Q}$, the map $\overline{\sigma}_{f,\mu}(X) = \overline{\sigma}(X,f,\mu)$ on $\mathcal{S}(f,\mu)$ is a measure.

Further, this map $\bar{\sigma}$ satisfies the following:

4) For any $X \in \overline{S}$ and $\mu \in \mathbb{Q}$, the map $\overline{\sigma}_{X,\mu}(f) = \overline{\sigma}(X,f,\mu)$ on $\mathcal{G}(X,\mu)$ is a homomorphism.

The map $\bar{\sigma}$ in Theorem 2 will be called the measure extension of σ .

To show that the domain of $\bar{\sigma}$ is sufficiently large, in a sense, we shall prove the next proposition. Note that the uniqueness of $\bar{\sigma}$ in Theorem 2 is easily verified by means of (i), (ii), and (iv) in the proof of the proposition.

Proposition 1. Consider the following conditions on a pair(Ω' , σ'):

- 1) $\Omega' \subset \mathcal{M} \times \mathcal{F} \times \mathcal{O}$ and σ' is a map of Ω' into J.
- 2) For any $(X, f, \mu) \in \Omega'$, there exist $X_i \in S$, $i=1, 2, \dots$, such that $X_i f \in \mathcal{G}$ for any i and such that $X_i \uparrow X$ $(i \rightarrow \infty)$.
- 3) For $X \in S$ and $f \in \mathcal{F}$ such that $Xf \in \mathcal{G}$, and for any $\mu \in Q$, we have (a) $(X, f, \mu) \in \Omega'$ and (b) $\sigma'(X, f, \mu) = \sigma(X, Xf, \mu)$.
- 4) For any $f \in \mathcal{F}$ and $\mu \in \mathcal{Q}$, (a') the set $\mathcal{S}'(f,\mu) = \{X \mid (X,f,\mu) \in \Omega'\}$ is a subring of \mathcal{M} and (b') the map $\sigma'_{f,\mu}(X) = \sigma'(X,f,\mu)$ on $\mathcal{S}'(f,\mu)$ is a measure.

Then a necessary and sufficient condition for a pair (Ω', σ') to satisfy the above conditions is to be such a pair that Ω' is a subset of Ω satisfying (a) in 3) and (a') in 4) and that σ' is the restriction of $\overline{\sigma}$ on Ω' . Further, Ω satisfies (a) and (a').

Proof. (i) The sufficiency is easily verified even if we assume that $\overline{\sigma}$ is an arbitrary map satisfying the conditions on $\overline{\sigma}$: 1), 2), and 3) in Theorem 2. To prove the necessity, let us show that (ii) if (Ω', σ') and (Ω', σ'') both satisfy the conditions, then $\sigma' = \sigma''$. For $(X, f, \mu) \in \Omega'$ and for $X_i \in \mathcal{S}$, $i = 1, 2, \cdots$, such that $X_i f \in \mathcal{G}$ for any i and such that $X_i \uparrow X$ $(i \to \infty)$, we have $\sigma'(X, f, \mu) = \sigma'_{f, \mu}(X) = \lim_{i \to \infty} \sigma'_{f, \mu}(X_i) = \lim_{i \to \infty} \sigma'(X_i, f, \mu) = \lim_{i \to \infty} \sigma(X_i, X_i f, \mu)$, and this implies (ii). Next let us show that (iii) Ω' is a subset of Ω . Let (X, f, μ) be an element of Ω' and suppose that $X_i^{(k)} \in \mathcal{S}$, $X_i^{(k)} f \in \mathcal{G}$, for $i = 1, 2, \cdots$, and that $X_i^{(k)} \uparrow X$ $(i \to \infty)$, where k = 1,

- 2. For given neighbourhood V of $0 \in J$, there exists a neighbourhood U of $0 \in J$ such that $U-U \subset V$. Since $\lim_{i \to \infty} \sigma(X_i^{(k)}, X_i^{(k)}f, \mu) = \sigma'(X, f, \mu)$, we have n_k such that $\sigma(X_i^{(k)}, X_i^{(k)}f, \mu) \sigma'(X, f, \mu) \in U$ for any $i \ge n_k$. For $n = \max(n_1, n_2)$ and for any $l \ge n$ and $m \ge n$, we have $\sigma(X_i^{(1)}, X_i^{(1)}f, \mu) \sigma(X_m^{(2)}, X_m^{(2)}f, \mu) \in V$ and this implies (iii). Now let us show that σ' is the restriction of $\bar{\sigma}$. Let σ'' be the restriction of $\bar{\sigma}$ on Ω' . Then the pair (Ω', σ'') satisfies the conditions and hence (ii) implies that $\sigma' = \sigma''$. Finally let us show that (iv) Ω satisfies (a) and (a'). For $X_i \in \mathcal{S}, i = 1, 2, \cdots$, such that $X_i \uparrow X$ $(i \to \infty)$, it follows that $\lim_{i \to \infty} \sigma(X_i, X_i f, \mu) = \lim_{i \to \infty} \sigma(X_i, X_i f, \mu) = \lim_{i \to \infty} \sigma(X_i, X_i f, \mu) = \sigma(X_i, X_i f, \mu)$ and this implies that Ω satisfies (a). That Ω satisfies (a') follows from Theorem 1. Thus the proposition is proved.
- 3. Lemmas. In this section we shall give some lemmas to prove the theorems in section 2.

Assumption 1. M is a set and \mathcal{M} is the ring of all subsets of M. A subring S of \mathcal{M} is a pseudo- σ -ring.

Let Σ be the set of all maps ξ , defined on the set of all positive integers N and taking values in S, such that $\xi(n) \subset \xi(n+1)$ for all $n \in N$. Put $\bar{\xi} = \bigcup_{n=1}^{\infty} \xi(n)$ for $\xi \in \Sigma$, and $\bar{\Theta} = \{\bar{\xi} \mid \xi \in \Sigma\}$ for $\Theta \subset \Sigma$. Then we have

Lemma 1. $\bar{\Sigma} = \{\bigcup_{n=1}^{\infty} X_n | X_n \in \mathcal{S}, n=1,2,\cdots\} \text{ and } \bar{\Sigma} \text{ is the sub-}\sigma\text{-ring of } \mathcal{M} \text{ generated by } \mathcal{S}.$

Corollary. S is an ideal of $\bar{\Sigma}$.

For $X \in \overline{\Sigma}$ and for $\xi_i \in \Sigma$, $i=0,1,\dots,k$, let us define maps $X\xi_0, \xi_0\xi_1 \dots \xi_k$ and $\xi_0 + \xi_1 + \dots + \xi_k$ of N into S by

- 1) $(X\xi_0)(n) = X(\xi_0(n))$
- 2) $(\xi_0 \xi_1 \cdots \xi_k)(n) = \xi_0(n) \xi_1(n) \cdots \xi_k(n)$
- 3) $(\xi_0 + \xi_1 + \cdots + \xi_k)(n) = \xi_0(n) + \xi_1(n) + \cdots + \xi_k(n)$

for any $n \in N$, respectively.

Lemma 2. For $X \in \overline{\Sigma}$ and for $\xi_i \in \Sigma, i=0,1,\dots,k$, we have

- 1) $X\xi_0 \in \Sigma \text{ and } \overline{X}\overline{\xi}_0 = X\overline{\xi}_0$
- 2) $\xi_0 \xi_1 \cdots \xi_k \in \Sigma$ and $\overline{\xi_0 \xi_1 \cdots \xi_k} = \overline{\xi_0 \xi_1 \cdots \xi_k}$
- 3) $\overline{\xi_i}\overline{\xi_j} = 0$ $(i \neq j)$ implies that $\xi_0 + \xi_1 + \cdots + \xi_k \in \Sigma$ and that $\overline{\xi_0 + \overline{\xi_1}}$ $\overline{+ \cdots + \xi_k} = \overline{\xi_0} + \overline{\xi_1} + \cdots + \overline{\xi_k}$.

Assumption 2. (S, \mathcal{F}, J) is an abstract integral structure [1] and \mathcal{G} is an S-invariant subgroup of \mathcal{F} .

Note that (S, \mathcal{G}, J) is also an abstract integral structure.

For each $f \in \mathcal{F}$, denote the sets $\{X \mid X \in \mathcal{S}, Xf \in \mathcal{G}\}$ and $\{\xi \mid \xi \in \Sigma, \xi(n)f \in \mathcal{G} \text{ for any } n \in N\}$ by $\mathcal{R}(f)$ and $\mathcal{L}(f)$, respectively. We can write $\mathcal{L}(f) = \{\xi \mid \xi \in \Sigma, \xi(n) \in \mathcal{R}(f) \text{ for any } n \in N\}.$

Lemma 3. $\Re(g) = S$ and $\Sigma(g) = \Sigma$ for any $g \in \mathcal{G}$.

Lemma 4. For any $f \in \mathcal{F}$, $\mathcal{R}(f)$ is an ideal of $\bar{\Sigma}$ and is a pseudo- σ -ring.

Proof. 1) It immediately follows that $0 \in \mathcal{R}(f) \subset \mathcal{S} \subset \overline{\mathcal{S}}$. 2) For

 $X \in \mathcal{R}(f)$ and for $Y \in \overline{\Sigma}$, Corollary to Lemma 1 implies that $XY \in \mathcal{S}$ and it holds that $(XY)f = (XY)(Xf) \in \mathcal{SG} \subset \mathcal{G}$. Hence, $XY \in \mathcal{R}(f)$ for any $X \in \mathcal{R}(f)$ and $Y \in \overline{\Sigma}$. 3) For $X, Y \in \mathcal{R}(f)$ such that XY = 0, we have $X + Y \in \mathcal{S}$, $(X + Y)f = Xf + Yf \in \mathcal{G}$, and thus we have $X + Y \in \mathcal{R}(f)$. 1), 2), and 3) above imply that $\mathcal{R}(f)$ is an ideal of $\overline{\Sigma}$. That $\mathcal{R}(f)$ is a pseudo- σ -ring follows from the fact that $\overline{\Sigma}$ is a σ -ring.

Corollary. $\mathcal{R}(f)$ is an ideal of S for any $f \in \mathcal{F}$.

Lemma 5. $\overline{\Sigma(f)} = \{\bigcup_{n=1}^{\infty} X_n | X_n \in \mathcal{R}(f), n=1,2,\cdots\} \text{ for any } f \in \mathcal{F}.$

Lemma 6. For any $f \in \mathcal{F}$, $\overline{\Sigma(f)}$ is an ideal of $\overline{\Sigma}$ and is a σ -ring.

Proof. This follows from 1), 2), and 3), below. 1) $0 \in \overline{\Sigma(f)} \subset \overline{\Sigma}$. 2) For $X \in \overline{\Sigma(f)}$ and $Y \in \overline{\Sigma}$, we have an element ξ of $\Sigma(f)$ such that $\overline{\xi} = X$. That $\mathcal{R}(f)$ is an ideal of $\overline{\Sigma}$ implies that $(Y\xi)(n) = Y(\xi(n)) \in \mathcal{R}(f)$ for each n and thus we have $Y\xi \in \Sigma(f)$. Hence $YX = Y\overline{\xi} = \overline{Y\xi} \in \overline{\Sigma(f)}$. 3) It holds that $\bigcup_{n=1}^{\infty} X_n \in \overline{\Sigma(f)}$ for $X_n \in \overline{\Sigma(f)}$, $n=1,2,\cdots$, which follows from Lemma 5.

Corollary 1. $\Re(f)$ is an ideal of $\overline{\Sigma(f)}$ for any $f \in \mathcal{F}$.

Corollary 2. If $f \in \mathcal{F}$, $X \in \overline{\Sigma}$, $\xi \in \Sigma(f)$, and if $\eta \in \Sigma$, we have

- 1) $X\xi \in \Sigma(f)$
- 2) $\xi \eta \in \Sigma(f)$
- 3) $\overline{\xi\eta} = 0$ and $\eta \in \Sigma(f)$ imply that $\xi + \eta \in \Sigma(f)$.

Proof. For each n, we have 1) $(X\xi)(n) = X(\xi(n)) \in \overline{\Sigma} \mathcal{R}(f) \subset \mathcal{R}(f)$, 2) $(\xi\eta)(n) = \xi(n)\eta(n) \in \mathcal{R}(f)\mathcal{S} \subset \mathcal{R}(f)$, and 3) $(\xi+\eta)(n) = \xi(n)+\eta(n) \in \mathcal{R}(f)$.

Lemma 7. $XY \in \mathcal{R}(f)$ if and only if $X \in \mathcal{R}(Yf)$, for any $f \in \mathcal{F}$, $X \in \mathcal{S}$ and $Y \in \overline{\Sigma}$.

Corollary. $X\xi \in \Sigma(f)$ if and only if $\xi \in \Sigma(Xf)$, for any $f \in \mathcal{F}, X \in \overline{\Sigma}$ and $\xi \in \Sigma$.

Lemma 8. If $f \in \mathcal{F}$, $\zeta \in \Sigma(f)$, and if $\overline{\zeta} = XY$ for $X, Y \in \overline{\Sigma}$, then we have an element ξ of $\Sigma(Yf)$ such that $\overline{\xi} = X$ and $\zeta = Y\xi$.

Proof. Let η be an element of Σ such that $\overline{\eta} = X$. Put $\xi = \eta + Y\eta + \zeta$. Then we have $\xi(n) \in \mathcal{S}$, which follows from the fact that \mathcal{S} is an ideal of $\overline{\Sigma}$, and we have $\xi(n) = (\eta(n) - Y) \cup \zeta(n) \subset \xi(n+1)$, for each n. This implies that $\xi \in \Sigma$. It follows that $(Y\xi)(n) = Y(\xi(n)) = Y(\zeta(n)) = \zeta(n)$ and this implies that $\zeta = Y\xi$. Since $\xi(n)(Yf) = ((Y\xi)(n))f = \zeta(n)f \in \mathcal{G}$, we have $\xi \in \Sigma(Yf)$. Finally we have $\overline{\xi} = \bigcup_{n=1}^{\infty} \xi(n) = \bigcup_{n=1}^{\infty} ((\eta(n) - Y) \cup \zeta(n)) = (\bigcup_{n=1}^{\infty} \eta(n) - Y) \cup \overline{\zeta} = (\overline{\eta} - Y) \cup XY = (X-Y) \cup XY = X$.

Now put $\tilde{\Omega} = \{(\bar{\xi}, f) | f \in \mathcal{F}, \xi \in \Sigma(f)\}$. Then we have

Lemma 9. $\overline{\Sigma(f)} = \{X \mid (X, f) \in \widetilde{\Omega}\} \text{ for any } f \in \mathcal{F}.$

Lemma 10. If $f_i \in \mathcal{F}$ and if $\xi_i \in \Sigma(f_i)$, $i=1,2,\dots,k$, then $\xi_1 \xi_2 \dots \xi_k \in \bigcap_{i=1}^k \Sigma(f_i)$.

Proof. This follows from Lemma 2 and Corollary 2 to Lemma 6. Corollary 1. If $f_i \in \mathcal{F}$, $\xi_i \in \Sigma(f_i)$, $i=1,2,\dots,k$, and if $\bar{\xi}_1 = \bar{\xi}_2 = \dots$

 $=\overline{\xi}_k=X$, then there exists an element ξ of $\bigcap_{i=1}^k \Sigma(f_i)$ such that $\overline{\xi}=X$. Corollary 2. If $(X,f_i)\in \widetilde{\Omega},\ i=1,2,\cdots,k$, then there exists an element ξ of $\bigcap_{i=1}^k \Sigma(f_i)$ such that $\overline{\xi}=X$.

Lemma 11. $(XY,f) \in \widetilde{\Omega}$ if and only if $(X,Yf) \in \widetilde{\Omega}$, for any $X,Y \in \overline{\Sigma}$ and $f \in \mathcal{F}$.

Proof. Suppose that $(XY,f)\in \tilde{\varOmega}$. For $\zeta\in \varSigma(f)$ such that $\overline{\zeta}\!=\!XY$, there exists $\xi\in \varSigma(Yf)$ such that $\overline{\xi}\!=\!X$ (Lemma 8), and this implies $(X,Yf)\in \tilde{\varOmega}$. Conversely suppose that $(X,Yf)\in \tilde{\varOmega}$. Then we have $\xi\in \varSigma(Yf)$ such that $\overline{\xi}\!=\!X$. Corollary to Lemma 7 implies that $Y\xi\in \varSigma(f)$. Since $\overline{Y\xi}\!=\!Y\overline{\xi}\!=\!XY$, we have $(XY,f)\in \tilde{\varOmega}$.

Put $\tilde{\mathcal{Q}}(X) = \{f \mid (X, f) \in \tilde{\mathcal{Q}}\}\$ for each $X \in \bar{\mathcal{Z}}$. Then we have Lemma 12. $\tilde{\mathcal{Q}}(X)$ is a subgroup of \mathcal{Z} for any $X \in \bar{\mathcal{Z}}$.

Proof. It sufficies to show that $f-g\in \widetilde{\mathcal{G}}(X)$ for $f,g\in \widetilde{\mathcal{G}}(X)$. Corollary 2 to Lemma 10 implies that there is $\xi\in \Sigma(f)\cap \Sigma(g)$ such that $\overline{\xi}=X$. We have $\xi(n)(f-g)=\xi(n)f-\xi(n)g\in \mathcal{G}$ for any n and thus we have $(X,f-g)=(\overline{\xi},f-g)\in \widetilde{\mathcal{Q}}$. Hence $f-g\in \widetilde{\mathcal{G}}(X)$.

References

- [1] M. Takahashi: Integration with respect to the generalized measure. I, II. Proc. Japan Acad., 43, 178-185 (1967).
- [2] —: Integration with respect to the generalized measure. III. Proc. Japan Acad., 44, 452-456 (1968).
- [3] —: Integration with respect to the generalized measure. IV. Proc. Japan Acad., 44, 457-461 (1968).