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0. Introduction.
In this note we shall give a theorem which is equivalent to the

Brouwer fixed point theorem. Such a theorem, we shall call here
Theorem A, can be applied to the foundation of analysis concerning
several independent variables ([1] Lemma F).

Notations used here are the same as those in [1]. Let K be the
n-dimensional closed unit ball, and K be the closed ball of radius
with center 0. Further let (S)_ be the maximal closed set whose -neighborhood is contained in the set S. The symbol I1" denotes the
ordinary euclidean norm. The Brouwer fixed point theorem or a con-
tinuous mapping on K into itself is referred to as Theorem B.

Theorem A. Let f(x) be a continuous mapping defined on K into
Rn of the form

f(x) Lx+N(x),
where L is non-degenerated affine mapping and I[N(x)I1<:.
Then f(K) (LK)_.

For sufficiently small the set (LK)_ is not empty, and therefore
such a continuous f(x) in Theorem A may be considered as having the
dimension-preserving property in some sense. Translating variables,
C-mapping with non-vanishing Jacobian belongs to this class in local
and Theorem A urnishes a lower bound of the extent of range f(Q)
for a small vicinity Q.

Theorem A increases in generality by certain modifications, how-
ever, we shall be interested in the fact that Theorem A which may be
seen intuitively is equivalent to the Brouwer fixed point theorem.

1. Theorem B implies Theorem A.
Proof. Let y be arbitrarily chosen from (LK)_ and fixed. Con-

sider the mapping x-L-(y--N(x)). Since y--N(x) belongs to LK, this
mapping is continuous on K into itself. Therefore by Theorem B there
exists a fixed point x( e K) such that L-(y-N(x))--x i.e. y--Lx+ N(x).

q.e.d.
2. Theorem A implies TheoremB.

Proof. Suppose there exists a continuous mapping f(x) on K into
itself with no fixed point. Then there exists a continuous mapping
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f(x) such that IIf(x)l]=l for all x( e K) and every boundary point re-
mains fixed. Such a mapping f(x) is obtained by solving (>=0) from
the following quadratic equation (1 / 2)x-- 2 f(x)II- 1.

Consider the mapping
F(, x) (1-- 0x+ Z(x)

for real parameter t(0<t<l), where for a fixed t, (1-t)x is the linear
term Lx and tf(x) is the non-linear term N(x) respectively in Theorem
A.

Evidently f(x)I[ , and we get
F(t, K) ((1- $)K)_, K1_2.

If 0<t<l/2, then K_2 is not empty and F(t,K) 0. By tending
t to $1/2, we get F(1/2, K) 0 which means the existence of a point
p such that (1/2)p+ (1/2)f(p):0 i.e. =--f(p).

This last equation is the contradiction which says that p is bound-
ary point and at the same time is removed by f. q.e.d.
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