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29. The Theory of Nuclear Spaces Treated
by the Method of Ranked Space. V

By Yasujird6 NAGAKURA
Science University of Tokyo

(Comm. by Kinjiré KUNUGI, M. J. A., Feb. 12, 1972)

§6. The dual space. In the previous papers [3]-[5] and [6], we
investigated the extended nuclear space &, that is, the space to which
the countably Hilbertian nuclear space was enlarged by the method of
ranked space given by K. Kunugi.

In this paper we shall study the dual space of é.

In the sequel, without loss of generality, we may take up only a
fundamental sequence of neighbourhoods of a simple type {V,,(0)}
with y(@) <y(i+ 1) and y(1)— oo, where VT@)(O) denotes V,(,.)(O, 1/7@), y@).

Definition 9. We say that a linear functional F' defined on the

space @ is R-continuous if gni g in @ implies lim, ... F(§,)=F(g). Fur-
thermore, let @ be the set of all R-continuous linear functionals on @
and let it be called the dual space of @.
From now on we shall write P,(g) in place of P; (g).
Since the set M;={ge®; P,(9)=0} is a subspace in @, we have
O=N,DM,, where
=0} .

N;= {g €d; Oty n ;P nis
k=i+1

This means that every element g in @ is represented by g=9g® +g®
such that

i
g(l) = ;:1 Zk,ni—l,ni(g’ Sok,ni)nigpk,n,;_l

and
g‘”—kZl Atni1,ni{9s PtnedniPie,nse
Lemma 28. We have N,CN,C-.-CN,C--
Proof. In general, we shall prove N;C Nm, where
N;= {élik,ni_,,ni(g, PrndniPrni—ys 9 € @}
and

T+1
Ni+1= {192—:1 /zk,n,;,n“l(g’ ng,n,;H)nHlSDk,ni y9 € @} .

Since we have

§0h ng Z‘ k ni_l,ni(goh,n,;y @k,ng)nigok,n,;_l’
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and then we obtain ¢, ,,=24,n;_1,n,Pn,nsse
Lemma 29.
(L To every g e @, we have &,Pi(9) <&, Pi1i(9).
(2) To every g € N,;, there exists a constant number
a(®)>1 such that P;..(9)<a(@)P(9).
Proof. (1) To every g ¢ @, we have

9= kzl 2’0:711'”1:4-1(9’ gok,ni+1)n¢+1§0k,ni-
Now we obtain

i
eiPi(g): Z zk,ni_l,ni(g’ gok,'ni)n,;gok,nq;_1
k=1 Ni—1
i+1
g Z Zk,ni_l,ni(g’ ¢k,ni)n¢¢k,nt_1 i
-1
i+1
= Z Zk ni—1,74 (Z /Zh gy nq,.;.;(g’ @n, n,;.“)nt +1Pryngy P, 'n,i) Dryng
ng ni—1
z+1
=125 Aitynimanihie,ngniss(9s PitsngsdninsPie,nis
k=1 Ni—1
i+1
= Z Zk,ni,ni“(g’ €0k,ni+1)n¢+1§0k,n¢ ni
k= -1
1,+1
S Z lk ni, n,,.u(g, SDk nz+1)ni+1§0k ng —‘si+1Pi+1(g)
ng

(2) If an element g belongs to N,, that is, (g, ¢ x,)x;=0 for all k>4,

we have
2

7
P?(g):H:él (Zk,nf;_;,ni/ei)(g, ¢k,ni)nz¢k,ni_1 ng

g {klzllini (Zk,ni_l,n;/si)z} kZ=1](g’ @k,ni)n¢]2°
Since @,, is a Hilbert space with the orthonormal system {¢; ,},

any element ¢’ € @,, is represented by 9'=> 7., (¢, ©i,n)n;Pr,n;» On the
other hand, we have

g,'——kZ::l Zk,ni,ni.u(g,, gok,n,;ﬂ)ni.,.lgok,ni'
And then we obtain

Zk,n—;,ni.l.l(g/’ ¢k,ni+1)ni+1=(g,9 gok,nt)nr
So that, we have

% %
kZ=:1 I (g’ gok’"i)nilz: kZ=1Mk,n¢,ni+1(g; ¢k,ni+1)ui+112= s?+1P§+1(g)'
Consequently we obtain
PYQ)Z {min Qiyepne/ 0| €1:1P21s(0).
Now, by § 3 in [4], we know

2 (kZ__:l Zk:ni—l,ng) €i41 é €i»
and then we have

1<2(§‘_I Zk,ni_l,ni)/ min (Ax,n;_3,ng) <ei/em{min (Zk,ni_hni)} .
k=1 k=leeed k=1e+e%
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If we set a(d)=¢;/¢&; . {ming_....; (Ai,n;_,,2))}, We obtain (2). Q.E.D.
Lemma 30. To every g c®, we have
Eipi(g)éeinpin(g)-

Proof. It is clear.

Lemma 31. The restriction of the semi-norm P, to N; is a norm
on N; And the restriction of the semi-norm P,(j>1) to N, is equivalent
to the norm P, on N,.

Proof. By Lemma 21 in [6], we have

%
PUg)= H 3 Cinemaind €09, GandnPinc

for every g ¢ @.
If an element g® belongs to N,, there exists some element g @
such that

ni—-1

i
g(l)zkglzk.ni_l,ni(g’ ng,ni)ning,ni_;‘
So that, we have

i i
Pi(g(l)) = ” kZ=:1 (2k,ni—1,nz/ei) (gllh,ni—l,m(g’ ¢h,ni)ni¢h.ni-1’ golc,ni) Mgolc,nq:—x nie

On the other hand, the proof of Lemma 28 shows @y, »,= A1, ;1,0 Pk, ni1
Hence we obtain

i
Pi(g(l))—_‘H kZI (zk.ni_l,ni/et)(g: ¢k:ni)nig0k;ni—1 =|| g ”ni-l/sio
= ng—1

The other half of the lemma is evident by Lemma 29. Thus the
proof is complete.

In the papers [5] and [6], we showed that the linear ranked space
& is the completion of the nuclear space @ by the method of ranked
space. Now, we identify @& with @0 and regard @ as a dense subset
in @.

Lemma 32. The set |z, N, is dense in &, that is, for every ele-

2 . . R
ment g € @, there exists a sequence {g;} with g, € N, such that g,.— 9.

For every element g € &, there exists a sequence {f:} in @ such that

R
fi—— ¢. This means that there exists some fundamental sequence of

neighbourhoods {17,@)(0)}, 7@ =7r@+1), y(®)—oco such that f;—ge V,(i)(O)
for all integer <. On the other hand, we have f;=g,+ ¢; with g, e N,,
and gje M,(i) for every integer <. And then we have
r(i)(gz 9= ﬁy(i)(gz+gi 9— gz)SPr(i)(fi 9)+pr(z)(gz
=P, (fi— D+ P, gD =L, (fi—9)=1/7(),
hence we obtain g,—g¢g ¢ V',(i)(O 2/r@®, r(@). Consequently we see

gi—g e 17,,@)(0), where /()= [%”)]

R
for integer ¢ such that [y(?)/2]>1. This means g.—>g.
Lemma 33. Ewvery R-continuous linear functional F defined on
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& is uniquely determined on Uy N,

Proof. It is clear.

Lemma 34. The restriction F; to N, of F', which is an R-contin-
uous linear functional defined on &, is continuous with respect to the
norm P, on N,.

Proof. Let a sequence {g,} belong to the set N, and coverge to an
element g in N,; with respect to the norm P; on N,. And then by
Lemma 29, the sequence {g,} converges to g with respect to all
P,(i=1,2,-.-). Hence for every neighbourhood V,(0,1/,7)=V;0),
there exists some number N such that the relation n=N implies g,—g

e V,(0). Consequently we have gn-——R—> ¢g. Hence we obtain F,(g,)
—F(g). This proof is complete.

Definition 10. We shall define the inner product (g, ¢s,.,)., for a
given element g in ®. There exists some R-cauchy sequence of ele-

ments {g,} in @ such that ge——IE—» g. And then to any V0, r,m), there
exists some integer N such that the relations §=N and »=N imply
gé_gv € V'L(O’ T, m)-
Since g, and g, belong to @, we have g.—g, € V,(0, r, m), that is
m 2
P} (9, —gﬂ)=“k§1 (Asyng-1mi €)(Ge— G» Pitsndni®Pitmi—s

ni—1

=’cZ=:1 (zk,ni_l,nq;/si)zl(gf’ gbk,ni)n,;_(gm gak,n,;)n,;|2<'rz-

Hence {(9,, ©i,n))x;}: is & Cauchy sequence of numbers.
Then we define (g, Qi n)n,=lim,_... (9¢, Pi,n)n;-
Consequently we have

Pi,m(g)=1€im P, (g9 =lim

JIcZ=:1 (Zk,ni_l,ni/ai)(ge’ gok,ni)nigolc.ni_l

Ni~1

:HIcZ=:1 (lk,ni_l,nz/ei)(g’ ng,ni)ningc,ni_l
_Theorem 5. Let F' be an R-continuous linear functional defined
on @, then there exists some integer i, such that the relation i,<iimplies
F(9)=0 for ge M,, where M,={¢ € @; P,(¢)=0}.
Proof. Suppose that this theorem is not true. From

Pi(¢)=H§;1 (Zk,ni_l,ni/ei)(goy sok,ni)nigok,ni_l o

there exists some sequence of integers {7(¢)} such that y(9) <k, <y@E+1)
and F (@i, nry-) = ¥ 0.

Then we have (©i, ), nr ./ a)-Zs 0, because (@, nry -,/ A:) € V,(0)
for every integer <.

This is a contradiction for F(@u,0ymray -/ @) =1.

Lemma 35. Let M? be the annihilator in & of M,. Then,

(1) M:is a finite dimensional subspace in &' :

ni—-1
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2 MM,
Proof. (1) Since we have

Mi= {kgv,;:ﬂ zk,ni_l,ni(g’ ¢k,ni)ni¢k,ni_1; g€ o } )
we obtain

M2= {F € é/ ; F (kgllk,ni_l,ni(g, §0k,ni)ni€0k,ni_1)=0, g € d)} .

Hence it follows M{={F ¢ &': F(¢y,,,_)=0 for k>1}.

Consequently the element of M} corresponds to {a;, -+ -, a;} such that
F(@g,n;_)=a; for k=1, -, 14.

(2 From M,2M,.,, it is evident.

Theorem 6. We have &' =\ g, M°.

Proof. By Theorem 5, it is clear.

Lemma 36. Let F be an R-continuous linear functional in &.
Then, there exists some integer i such that F ¢ M} and

F@)= 2} Ztngmsini 8 Pendod (Pini)

for all g e .
Proof. By Theorem 5, there exists some integer ¢ such that
FeM!. And to every element ge @ there exists some sequence of

elements {g.} in @ such that ge—i g. Thus we have F(g,)—F(g).
On the other hand, since we have

ge =g—_—:1 zk,ni_l,nt(ge’ @k,n;)m@k,ni_,,
we obtain

F(ge)=k§1 Zk,ni_l,ni(ge’ ng,n¢)n¢F(ng,n1;_l)'
Consequently we see

F()=lm F(@) =1 {3} L ni0er OrndndF Prnc )

§—o0
= kil zk,ni._l,ni(gy golc,ni)niF(ng,ni_l).

Definition 11. We define
V*(O, h,0)={F e M}: sup |F(g)| <e;/h},
9€¥4(0,1,9)
where & is a positive integer, as a neighbourhood of the origin in 4
and we call it a neighbourhood of rank h. Furthermore we define that
the neighbourhood with rank 0, V¥ is always the space &

Lemma 37. We have V*(0, h,))CV*(0, h, 7) if 1<7.

Proof. Let F belong to V*(0,h,7). Then we have |F(g)|<e;/h for
every g€ V:0,1,4), i.e. P(9)<1. Now, if f belongsto V,0,1,), i.e.,
P, (<1, we see Pi(eif/sj) <1by Lemma 30. Thus we obtain |F(e;,/¢,)|
<¢g;/h. This shows that F' belongs to V*(0, h, 7).

Lemma 38. We have i<7 if V*(0,1,9) S V*(0, h, 7) with 1= h.
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Proof. Suppose :>j. Put F to be a linear functional such that

D F(gn,_)=0for k=1-.-j.--,i—1,4+1,---

2 F(@in_)= 1/21.

Then F does not belong to V*(0, %, ), but belongs V*(0,1,1).
Because to every g e V,(0,1,7), we have

F@I=|3 Asinicsnd 85 Prndnd @)

i 1/2
< 603 Crmecandf €719, Punducf) 1F (@t
L& F(Pin;- ) <e4/L.
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