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29. A Characterization of Submodules of the
Quotient Field of a Domain

By Tokuo IwAMOTO
(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

1. Introduction. Let D be an elementary unique factorization
domain with identity and K its quotient field. Let P be the set of the
prime elements of D, and we consider the set F of the maps f from P
into ZU{— oo} (the set of integers and negative infinity), provided that
there exists only a finite number of prime elements p such that f(p)>0
for each map f of F. Let M(f) be the set of the elements z ¢ K with
V,(@) > f(p) for all p e P, where V, denotes the p-valuation of K. Then
we can prove that M(f) is a D-module, which is called an f-module.
Now in [2], R. A. Beaumont and H. S. Zuckerman have characterized
the additive groups of rational numbers. The purpose of this paper is
to extend the results in [2] for an elementary unique factorization
domain D and to investigate D-submodules of K related with f-modules.

The author is thankful to Professor K. Murata for his valuable
advices.

2. Properties of f-modules in an elementary unique factorization:
domain.

Let D be an elementary unique factorization domain (abv. EUFD)
with the quotient field K, and let P be the set of all prime elements.
Let a be a non-zero element of D and a=1I5_,p? (n,: positive integers)
the factorization of a into prime factors. We define the valuation of
K in the following way. We consider the map v, of D into non-nega-
tive integers: v,(a)=mn,, v,(0)=occ for all p, and extend v, to K as fol-
lows: V,(a)=v,(ac)—v,(c), where 0tac K and ace D with 0£ce D.
It is easy to see that the map V, of K into integers does not depend on
the choice of ¢, and satisfies the above conditions of the p-valuation. If
f@=0, feF, for all prime elements p, it is easily verified that M(y)
=D.

Proposition 2.1. Let D be EUFD with the quotient field K. Then
M(H2DM(S) if and only if f(p)<f'(p) for each element p of P.

Proof. “If part” is evident. Suppose that M()DM(f’), and as-
sume that f(p,) > f"(p,) for some element p, of P. Let Q={p;,, - - -, Ds,}
be the set of the primes with f(p;)>0 or f'(»,)>0 (j=1,-..,7r). If
D, is in Q, we take out it from the set, and if f/(p,) = —co, we set f/(p,)
= —n by taking an integer » >0 such that f(p) > —n. Let a
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= pf PO _pfs**?, where fo(pi)=Max {f(ps), f'(vs)} (=1, ---, 7).
Put a=p{" v, if the set Q is empty. Then V,(@)=0> f/(p) for primes
p such that p#p, and p#p,, (=Y, - -, 1), Vo, (@ =7(Dr,) = [ (®s,), and
Vo (@)= f"(p)<f(p). Hence we have a e M(f) and a e M(f’), a con-
tradiction.

Corollary. M) =M(f") if and only if f(p)=f'(p) for all primesp.

Proof. It is immediate from Proposition 2.1.

If EUFD D satisfies the following condition (¢), it is denoted by D*.

(¢) Every principal ideal of D is maximal.

Let a=1II5_p} and b=1II_,p}’ be prime factorizations of a and b,
where {p,};., are all prime factors of @ and b with m;=£0 or n;7£0. The
element II5_,p% is called the greatest common divisor of @ and b, and it
is denoted by (a, b) where d;=Min {m,, n;} (=1, ---,9).

Lemma 1. Let M be a D*-module. If a,a’ ¢ MND*, then (a,a’)
e M N D*.

Proof. If a+a'=(a,a)(D+D"), then (b,0)=1. Thusif b=1II:_,py
and b’=ﬂ‘,=1p,’}; are factorizations of b and b’ into prime factors, then
Di,# Dy, for all 4, 7, and (p;,) and (p,,) are prime ideals. Therefore (p;,)
+(pk9):(1) for all ,7, and thus (b)+(b)=(1). Consequently, there
exist d and d’ such that db4+d’b’=1 and d,d’ € D. Therefore we have
proved that (a, a’)=(a, a)(db+d'V)=da+d'a’ € M N D*.

If there exist primes p, with V, (a) >0 for all elements a of M N D*,
we collect those primes, and let it be {p;, D, - - -, Du}.

Lemma 2. The element E=I17_,p% ts contained in M N D*, where
e,=Min{V, (x)|x € M N D*}.

Proof. We choose elements a,, a, ---,a, with V,(a)=e,
a;e MND* (1=1,2, ---,n). Now, let a, be any element of M N D*, and
b, be the element such that

by =(ay, @) =Dips®- + - PIPEDE - - DY, ay>e(ay, Kyt positive integers).
Next, we choose elements ¢,, ¢, - - -, ¢, with V,, (¢,)=0, ¢; € M N D* (=1,
2,...,8), and we take elements b,, b, - - -, b,,, as follows:
by=(by, ¢)=pspsi. - - PR - - DE, ai>eq, k> k>0,
by=(bs, ) =popg + - - PFDY - - pEY, o >y, K> K] >0,
bs+1=(bs’ cs)zpilpgéu ° ’p;’(‘” ’ aé” Zei°
Moreover we take the following elements:
hz-:(az’ bs+1) =p§1pg2p§s Lo pfzn, ,Bzz €y
by =(as, hy) =DPDPPPDES - - Do, Bi> ey
hn = (a’n’ hn—l) :pflpgapgs e 105,".
Then h,=FE and hence E ¢ M N D* by Lemma 1.
In the case of Min{V,(x)|x € MND*}=0 for all primes p,EF is a
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unit of D*. There exists an element E-! in D* and M is a D*-module,
80 1e MND*. Hence we may assume without loss of generality that
E=1. Any element of M N D* can be represented as aF, where a € D*.
Moreover we can show that any element of M is in the form qF, where
geKand V,(9)>0 (¢=1,2, ---,n). For, if x € M, then there exists an
element a of D* such that ax e M N D* and (ax,a)=1, and there exists
an element a’ of D* such that ex=0a’E. Let a™'a’=¢q, then V,,(¢)>0
for all 7, and x=qFE. We assume in the proof of the remaining proper-
ties that the elements of M are written in the form qF, where q € K and
Vpi(Q)ZO (Ilf:]-’ 2’ Tty n)'

Lemma 3. Let M be a D*-module. If qF € M, aq € D* and (aq, )
=1, then o 'K ¢ M.

Proof. Take elements d and d’ of D* such that daq +d’a=1. Then
we have ¢ 'E=a'E(daq-+d'a)=dqE +d'E ¢ M.

Lemma 4. Let M be a D*-module. If gE ¢ M, ¢'E ¢ M and (aq, a)
=(bq’; b)=(a,b)=1, then o 'b'E ¢ M, where a,b,aq and bq’ are ele-
ments of D*.

Proof. By Lemma 3, a~'E and b~'F are contained in M. Since
there exist elements d and d’ such that da+d’b=1, we have

a0 'E=0"'b"'E(da+d'b)=db™'E+d'a'E e M.

Proposition 2.2. If M is any D*-module, then M is represented as
M=M(f) for some f € F.

Proof. Put V,(M)= —oo, if there exists an element q of M such
that V,(¢)=—n for any positive integer n: and if not, put V, (M)
=Min{V,(9)|q e M}. Now, we define f(p)=V,(M). Then it is evident
that M M(f). Conversely let x be any element of M(f). Then it can
be written in the form x=qF (¢e K). Let {p,,Ds,» - -, D,,} be the set
of the prime elements such that V,, (¢)=n; (n;: negative integers). If
V,(@)>0 for all primes p, then ¢e D* and x e M since E e M. So we
can assume the existence of such elements. By the definition of f(p,,
=V,, (M), there exists an element a;p™E of M for each <. Here we may
assume that a; e D* and V,, (a,)=0 for each . By Lemma 3, vl eM
for each 4, and then I7:_,;p*:E ¢ M by Lemma 4. Consequently, x=qE e M.

Theorem 1. There is one to one correspondence between the set
of D*-modules and F.

Proof. It is straightfoward by Propositions 2.1 and 2.2.

Let E=1II7_,p{®? be a finite product of all prime elements such that
f(®)>0 in an f-module M(f) of EUFD D. Then any element of M(f)
is written in the form qE(qe K, V,,(¢)>0). Butif f(p)<O0 for all primes
p, then we can take as E=1.

Theorem 2. Let D be EUFD. If M()f) and M(f’) are D-modules,
then the following conditions are equivalent.
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1) M) is isomorphic to M(f).

2 f)=f'(») for almost all p, and whenever f(p)=f(p), both
are not —oo. Every isomorphism between M(f) and M(f’) is given by
qE—gqE’, where E=II7_p{"?, f(p)>0, E'=II5_p]*?, f(p;)>0, and
V@)= —f0)=V,(E)V+V,(E) for all primes p with f(p)=# —oco
and f'(p)+# — oco.

Proof. The proof is similar to the one of Corollary 3 in [2].

Proposition 2.3. Let D be EUFD, and let M(f) and M(f’) be f-
modules of D. Then the set M={mm’'|me M(f), m € M(f")} is a D-
module.

Proof. Let fu(p)=/f(®)+ f'(p) for pe P. Then it is evident that
MCM(f). Now let 2 be any element of M(f,) and x=II:_p?* the
factorization of x into prime factors. Since ;> f(p)=f(p,) + f'(p,) for
all p;, we have pri=prip/ Pop/ ®d for all p, (n,: non-negative integers).
We write a=1I:_,p™. Then x=(all:_pf*")IIi_p!{ *>. Since a e D and
alli_p{® e M(f), we have x ¢ M.

3. Subrings with the form M(f).

Proposition 3.1. Let D be EUFD with the quotient field K. M(f)
is a subring of K containing D if and only if f(p)=0 or f(p)= —oco for
all prime elements p.

Proof. Let f(»)=0 or f(p)=—oco for all p. Then V,(ab)=V,(a)
+V,(0) =@+ f()=f(p) for a,be M(f). Hence abe M(f). Con-
versely we agsume that D is EUFD and M(y) is a subring of K such
that M(f)2D. It is obvious that f(p)<O0 for all p. If f(p,)# —cc and
Sy <0 for some p,, then a=p{*> ¢ M(f) since f(p)<O0 for all p. Then
a*=py/ " e M(f) since M(f) is a ring. On the other hand, V, (a?
=2f(p) < f(p,) since f(p,)<0. It contradicts the containment a?ec M(f).

Lemma 5. Let D be EUFD and let M(f) and M(f’) be subrings
of K, each of which contains D. If we define fi(p)=Min{f(p), f'(»)}
for all p, then M(f)) is a subring which contains both M(f) and M(f’),
and M(f,) is unique minimal in such subrings.

Proof. It is clear that M()CTM(f) and M(f S M(f). If M(f)
contains M(f) and M(f"), then f(p)>f.(p) and f'(p)>f,(») for all p by
Proposition 2.1. Hence f(p)> fi(p). We have therefore M(f,) T M(f).

The ring M(f, considered in Lemma 5 is denoted by M(f)U M(f").

Lemma 6. Let D, M(f) and M(f’) be as above. If we define f(p)
=Max {f(p), f'(p)}, then M(f)=M(f)NM(f").

Proof. It is evident that M(f)CM(f) and M(f)M(f’") since
Jop)= f(®) and f(0)>f'(p). Then M(f)SM(f)NM(f’). Conversely,
let « be an arbitrary element of M(f)NM(f’). Then V,(x)> f(p) and
Vo(@)> f(p). Hence we have V,(x)>Max {f(p), f'(®)}=r(p).

Lemmas 5 and 6 imply that the set of rings of the form M(f) which
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contains EUFD D forms a lattice. Moreover we set f,(p)=0 and
Sfx(®)= —oco for all p. Then subrings of K contains D form a comple-
mented lattice under inclusion, which has K=M(fz) as its greatest
element and D=M(f,) as its least element, where the complement of
M(f) is M(f) and f is defined in the following way: f(p)=0=f(p)
= —o00, f(P)=— 0= f(p)=0.

Next we define a vector X(f)=(---f(p)---) (p,€ P) and W denotes
the set {X(f)|f e F'}, where F’ is the subset of F such that f(p)=0 or
J(@)= —oo forall p. Let us define the order X(f)>X(f’) in the follow-
ing way: f(p)<f'(p) for all p<=X(f)>X(f’). Then W forms a
Boolean lattice under the above ordering.

Theorem 3. Let D be EUFD with the quotient field K. Then
the set of subrings of K, each of which contains D and has of the form
M(f) forms a Boolean lattice under inclusion.

Proof. {M(f)} is lattice-isomorphic to W under the correspond-
ence: M(f)—X(f).

Corollary. Let K be the quotient field of D*. Then the set of sub-
rings of K which contains D* as its least element forms an atomic
Boolean lattice.

Proof. It is verified by Proposition 2.2 and Theorem 3.
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