29. A Characterization of Submodules of the Quotient Field of a Domain

By Tokuo IWAMOTO

(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

1. Introduction. Let D be an elementary unique factorization domain with identity and K its quotient field. Let P be the set of the prime elements of D, and we consider the set F of the maps f from P into $Z \cup \{-\infty\}$ (the set of integers and negative infinity), provided that there exists only a finite number of prime elements p such that f(p) > 0 for each map f of F. Let M(f) be the set of the elements $x \in K$ with $V_p(x) \ge f(p)$ for all $p \in P$, where V_p denotes the p-valuation of K. Then we can prove that M(f) is a D-module, which is called an f-module. Now in [2], R. A. Beaumont and H. S. Zuckerman have characterized the additive groups of rational numbers. The purpose of this paper is to extend the results in [2] for an elementary unique factorization domain D and to investigate D-submodules of K related with f-modules.

The author is thankful to Professor K. Murata for his valuable advices.

2. Properties of f-modules in an elementary unique factorization domain.

Let D be an elementary unique factorization domain (abv. EUFD) with the quotient field K, and let P be the set of all prime elements. Let a be a non-zero element of D and $a=\Pi_{j=1}^sp_j^{n_j}$ (n_j : positive integers) the factorization of a into prime factors. We define the valuation of K in the following way. We consider the map v_p of D into non-negative integers: $v_p(a)=n_j$, $v_p(0)=\infty$ for all p, and extend v_p to K as follows: $V_p(a)=v_p(ac)-v_p(c)$, where $0\neq a\in K$ and $ac\in D$ with $0\neq c\in D$. It is easy to see that the map V_p of K into integers does not depend on the choice of c, and satisfies the above conditions of the p-valuation. If f(p)=0, $f\in F$, for all prime elements p, it is easily verified that M(f)=D.

Proposition 2.1. Let D be EUFD with the quotient field K. Then $M(f)\supseteq M(f')$ if and only if $f(p)\leq f'(p)$ for each element p of P.

Proof. "If part" is evident. Suppose that $M(f)\supseteq M(f')$, and assume that $f(p_0)>f'(p_0)$ for some element p_0 of P. Let $Q=\{p_{k_1},\cdots,p_{k_r}\}$ be the set of the primes with $f(p_{k_j})>0$ or $f'(p_{k_j})>0$ $(j=1,\cdots,r)$. If p_0 is in Q, we take out it from the set, and if $f'(p_0)=-\infty$, we set $f'(p_0)=-n$ by taking an integer n>0 such that $f(p_0)>-n$. Let a

 $=p_0^{f'(p_0)}H_{j=1}^rp_{k_j}^{f_0(p_{k_j})}, \text{ where } f_0(p_{k_j})=\operatorname{Max}\left\{f(p_{k_j}),\,f'(p_{k_j})\right\}\ (j=1,\,\cdots,\,r).$ Put $a=p_0^{f'(p_0)}$, if the set ${\boldsymbol Q}$ is empty. Then $V_p(a)=0\geq f'(p)$ for primes p such that $p\neq p_0$ and $p\neq p_{k_j}$ $(j=y,\,\cdots,\,r),\,V_{p_{k_j}}(a)=f_0(p_{k_j})\geq f'(p_{k_j}),$ and $V_{p_0}(a)=f'(p_0)< f(p_0).$ Hence we have $a\not\in M(f)$ and $a\in M(f')$, a contradiction.

Corollary. M(f) = M(f') if and only if f(p) = f'(p) for all primes p. Proof. It is immediate from Proposition 2.1.

If EUFD D satisfies the following condition (c), it is denoted by D^* .

(c) Every principal ideal of D is maximal.

Let $a=\prod_{j=1}^s p_p^{m_j}$ and $b=\prod_{j=1}^s p_j^{n_j}$ be prime factorizations of a and b, where $\{p_j\}_{j=1}^s$ are all prime factors of a and b with $m_j \neq 0$ or $n_j \neq 0$. The element $\prod_{j=1}^s p_j^{d_j}$ is called the greatest common divisor of a and b, and it is denoted by (a,b) where $d_j = \min\{m_j, n_j\}$ $(j=1, \dots, s)$.

Lemma 1. Let M be a D*-module. If $a, a' \in M \cap D^*$, then $(a, a') \in M \cap D^*$.

Proof. If a+a'=(a,a')(b+b'), then (b,b')=1. Thus if $b=\Pi_{i=1}^s p_{k_i}^{m_i}$ and $b'=\Pi_{j=1}^t p_{k_j}^{n_j}$ are factorizations of b and b' into prime factors, then $p_{k_i} \neq p_{k_j}$ for all i,j, and (p_{k_i}) and (p_{k_j}) are prime ideals. Therefore $(p_{k_i})+(p_{k_j})=(1)$ for all i,j, and thus (b)+(b')=(1). Consequently, there exist d and d' such that db+d'b'=1 and $d,d'\in D$. Therefore we have proved that $(a,a')=(a,a')(db+d'b')=da+d'a'\in M\cap D^*$.

If there exist primes p_i with $V_{p_i}(a) > 0$ for all elements a of $M \cap D^*$, we collect those primes, and let it be $\{p_1, p_2, \dots, p_n\}$.

Lemma 2. The element $E = \prod_{i=1}^n p_i^{e_i}$ is contained in $M \cap D^*$, where $e_i = \min \{V_{v_i}(x) \mid x \in M \cap D^*\}$.

Proof. We choose elements a_1, a_2, \dots, a_n with $V_{p_i}(a_i) = e_i$, $a_i \in M \cap D^*$ $(i=1, 2, \dots, n)$. Now, let a_0 be any element of $M \cap D^*$, and b_1 be the element such that

 $b_1 = (a_0, a_1) = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n} p_{r_1}^{k_1} p_{r_2}^{k_2} \cdots p_{r_s}^{k_s}, \ a_i \ge e_i(a_i, k_j)$: positive integers). Next, we choose elements c_1, c_2, \cdots, c_s with $V_{p_{r_i}}(c_i) = 0, \ c_i \in M \cap D^*$ ($i = 1, 2, \cdots, s$), and we take elements $b_2, b_3, \cdots, b_{s+1}$ as follows:

$$\begin{array}{l} b_2\!=\!(b_1,c_1)\!=\!p_1^{e_1}p_2^{a_2'}\!\cdots p_n^{a_n'}p_{r_2}^{k_2'}\!\cdots p_{r_s}^{k_s'},\;\alpha_i'\!\geq\!e_i,\;k_j\!\geq\!k_j'\!\geq\!0,\\ b_3\!=\!(b_2,c_2)\!=\!p_1^{e_1}p_2^{a_2'}\!\cdots p_n^{a_n'}p_{r_s}^{k_s'}\!\cdots p_{r_s}^{k_s'},\;\alpha_i''\!\geq\!e_i,\;k_j'\!\geq\!k_j''\!\geq\!0, \end{array}$$

 $b_{s+1} = (b_s, c_s) = p_1^{e_1} p_2^{\alpha_2^{(s)}} \cdots p_n^{\alpha_n^{(s)}}, \alpha_i^{(s)} \ge e_i.$

Moreover we take the following elements:

 $h_n = (a_n, h_{n-1}) = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_n^{e_n}$.

Then $h_n = E$ and hence $E \in M \cap D^*$ by Lemma 1.

In the case of Min $\{V_p(x) | x \in M \cap D^*\}=0$ for all primes p, E is a

unit of D^* . There exists an element E^{-1} in D^* and M is a D^* -module, so $1 \in M \cap D^*$. Hence we may assume without loss of generality that E=1. Any element of $M \cap D^*$ can be represented as aE, where $a \in D^*$. Moreover we can show that any element of M is in the form qE, where $q \in K$ and $V_{p_i}(q) \geq 0$ $(i=1,2,\cdots,n)$. For, if $x \in M$, then there exists an element a of D^* such that $ax \in M \cap D^*$ and (ax,a)=1, and there exists an element a' of D^* such that ax=a'E. Let $a^{-1}a'=q$, then $V_{p_i}(q) \geq 0$ for all i, and x=qE. We assume in the proof of the remaining properties that the elements of M are written in the form qE, where $q \in K$ and $V_{p_i}(q) \geq 0$ $(i=1,2,\cdots,n)$.

Lemma 3. Let M be a D^* -module. If $qE \in M$, $aq \in D^*$ and (aq, a) = 1, then $a^{-1}E \in M$.

Proof. Take elements d and d' of D^* such that daq + d'a = 1. Then we have $a^{-1}E = a^{-1}E(daq + d'a) = dqE + d'E \in M$.

Lemma 4. Let M be a D^* -module. If $qE \in M$, $q'E \in M$ and (aq, a) = (bq'; b) = (a, b) = 1, then $a^{-1}b^{-1}E \in M$, where a, b, aq and bq' are elements of D^* .

Proof. By Lemma 3, $a^{-1}E$ and $b^{-1}E$ are contained in M. Since there exist elements d and d' such that da+d'b=1, we have

$$a^{-1}b^{-1}E = a^{-1}b^{-1}E(da+d'b) = db^{-1}E + d'a^{-1}E \in M.$$

Proposition 2.2. If M is any D^* -module, then M is represented as M = M(f) for some $f \in F$.

Proof. Put $V_p(M) = -\infty$, if there exists an element q of M such that $V_p(q) = -n$ for any positive integer n: and if not, put $V_p(M) = \min\{V_p(q) \mid q \in M\}$. Now, we define $f(p) = V_p(M)$. Then it is evident that $M \subseteq M(f)$. Conversely let x be any element of M(f). Then it can be written in the form x = qE ($q \in K$). Let $\{p_{r_1}, p_{r_2}, \cdots, p_{r_s}\}$ be the set of the prime elements such that $V_{p_{r_i}}(q) = n_i$ (n_i : negative integers). If $V_p(q) \ge 0$ for all primes p, then $q \in D^*$ and $x \in M$ since $E \in M$. So we can assume the existence of such elements. By the definition of $f(p_{r_i}) = V_{p_{r_i}}(M)$, there exists an element $a_i p_{r_i}^{n_i} E$ of M for each i. Here we may assume that $a_i \in D^*$ and $V_{p_{r_i}}(a_i) = 0$ for each i. By Lemma 3, $p_{r_i}^{n_i} E \in M$ for each i, and then $\Pi_{i=1}^s p_{r_i}^{n_i} E \in M$ by Lemma 4. Consequently, $x = qE \in M$.

Theorem 1. There is one to one correspondence between the set of D^* -modules and F.

Proof. It is straightfoward by Propositions 2.1 and 2.2.

Let $E=\prod_{i=1}^n p_i^{f(p_i)}$ be a finite product of all prime elements such that $f(p_i)>0$ in an f-module M(f) of EUFD D. Then any element of M(f) is written in the form $qE(q\!\in\!K,V_{p_i}(q)\!\geq\!0)$. But if $f(p)\!\leq\!0$ for all primes p, then we can take as $E\!=\!1$.

Theorem 2. Let D be EUFD. If M(f) and M(f') are D-modules, then the following conditions are equivalent.

- (1) M(f) is isomorphic to M(f').
- (2) f(p)=f'(p) for almost all p, and whenever $f(p)\neq f'(p)$, both are not $-\infty$. Every isomorphism between M(f) and M(f') is given by $qE\leftrightarrow gqE'$, where $E=\prod_{i=1}^r p_i^{f(p_i)}$, $f(p_i)>0$, $E'=\prod_{j=1}^s p_j^{f'(p_j)}$, $f'(p_j)>0$, and $V_p(g)=f'(p)-f(p)-V_p(E')+V_p(E)$ for all primes p with $f(p)\neq -\infty$ and $f'(p)\neq -\infty$.

Proof. The proof is similar to the one of Corollary 3 in [2].

Proposition 2.3. Let D be EUFD, and let M(f) and M(f') be f-modules of D. Then the set $M = \{mm' | m \in M(f), m' \in M(f')\}$ is a D-module.

Proof. Let $f_0(p) = f(p) + f'(p)$ for $p \in P$. Then it is evident that $M \subseteq M(f_0)$. Now let x be any element of $M(f_0)$ and $x = \prod_{i=1}^s p_i^{n_i}$ the factorization of x into prime factors. Since $n_i \ge f_0(p_i) = f(p_i) + f'(p_i)$ for all p_i , we have $p_i^{n_i} = p_i^{m_i} p_i^{f(p_i)} p_i^{f'(p_i)}$ for all p_i (m_i : non-negative integers). We write $a = \prod_{i=1}^s p_i^{m_i}$. Then $x = (a \prod_{i=1}^s p_i^{f(p_i)}) \prod_{i=1}^s p_i^{f'(p_i)}$. Since $a \in D$ and $a \prod_{i=1}^s p_i^{f(p_i)} \in M(f)$, we have $x \in M$.

3. Subrings with the form M(f).

Proposition 3.1. Let D be EUFD with the quotient field K. M(f) is a subring of K containing D if and only if f(p) = 0 or $f(p) = -\infty$ for all prime elements p.

Proof. Let f(p) = 0 or $f(p) = -\infty$ for all p. Then $V_p(ab) = V_p(a) + V_p(b) \ge f(p) + f(p) = f(p)$ for $a, b \in M(f)$. Hence $ab \in M(f)$. Conversely we assume that D is EUFD and M(f) is a subring of K such that $M(f) \supseteq D$. It is obvious that $f(p) \le 0$ for all p. If $f(p_0) \ne -\infty$ and $f(p_0) < 0$ for some p_0 , then $a = p_0^{f(p_0)} \in M(f)$ since $f(p) \le 0$ for all p. Then $a^2 = p_0^{2f(p_0)} \in M(f)$ since M(f) is a ring. On the other hand, $V_{p_0}(a^2) = 2f(p_0) < f(p_0)$ since $f(p_0) < 0$. It contradicts the containment $a^2 \in M(f)$.

Lemma 5. Let D be EUFD and let M(f) and M(f') be subrings of K, each of which contains D. If we define $f_0(p) = \min\{f(p), f'(p)\}$ for all p, then $M(f_0)$ is a subring which contains both M(f) and M(f'), and $M(f_0)$ is unique minimal in such subrings.

Proof. It is clear that $M(f) \subseteq M(f_0)$ and $M(f') \subseteq M(f_0)$. If $M(f_1)$ contains M(f) and M(f'), then $f(p) \ge f_1(p)$ and $f'(p) \ge f_1(p)$ for all p by Proposition 2.1. Hence $f_0(p) \ge f_1(p)$. We have therefore $M(f_0) \subseteq M(f_1)$.

The ring $M(f_0)$ considered in Lemma 5 is denoted by $M(f) \cup M(f')$.

Lemma 6. Let D, M(f) and M(f') be as above. If we define $f_0(p) = \max\{f(p), f'(p)\}$, then $M(f_0) = M(f) \cap M(f')$.

Proof. It is evident that $M(f_0) \subseteq M(f)$ and $M(f_0) \subseteq M(f')$ since $f_0(p) \ge f(p)$ and $f_0(p) \ge f'(p)$. Then $M(f_0) \subseteq M(f) \cap M(f')$. Conversely, let x be an arbitrary element of $M(f) \cap M(f')$. Then $V_p(x) \ge f(p)$ and $V_p(x) \ge f'(p)$. Hence we have $V_p(x) \ge \max\{f(p), f'(p)\} = f_0(p)$.

Lemmas 5 and 6 imply that the set of rings of the form M(f) which

contains EUFD D forms a lattice. Moreover we set $f_D(p) = 0$ and $f_K(p) = -\infty$ for all p. Then subrings of K contains D form a complemented lattice under inclusion, which has $K = M(f_K)$ as its greatest element and $D = M(f_D)$ as its least element, where the complement of M(f) is $M(\underline{f})$ and \underline{f} is defined in the following way: $f(p) = 0 \Rightarrow \underline{f}(p) = -\infty$, $f(p) = -\infty \Rightarrow f(p) = 0$.

Next we define a vector $X(f) = (\cdots f(p_{\lambda}) \cdots)$ $(p_{\lambda} \in \textbf{\textit{P}})$ and $\textbf{\textit{W}}$ denotes the set $\{X(f) \mid f \in \textbf{\textit{F}}'\}$, where $\textbf{\textit{F}}'$ is the subset of $\textbf{\textit{F}}$ such that f(p) = 0 or $f(p) = -\infty$ for all p. Let us define the order $X(f) \geq X(f')$ in the following way: $f(p_{\lambda}) \leq f'(p_{\lambda})$ for all $p \Longleftrightarrow X(f) \geq X(f')$. Then $\textbf{\textit{W}}$ forms a Boolean lattice under the above ordering.

Theorem 3. Let D be EUFD with the quotient field K. Then the set of subrings of K, each of which contains D and has of the form M(f) forms a Boolean lattice under inclusion.

Proof. $\{M(f)\}$ is lattice-isomorphic to W under the correspondence: $M(f) \leftrightarrow X(f)$.

Corollary. Let K be the quotient field of D^* . Then the set of subrings of K which contains D^* as its least element forms an atomic Boolean lattice.

Proof. It is verified by Proposition 2.2 and Theorem 3.

References

- [1] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Journ. of Polytec., Osaka City Univ., 4, 1-33 (1953).
- [2] R. A. Beaumont and H. S. Zuckerman: A characterization of the additive rationals. Pacific J. Math., 1, 169-177 (1951).
- [3] K. Murata: On Dedekindean *l*-semigroups and its lattice-ideals. Proc. Japan Acad., 47, 132-134 (1971).