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35. Two Theorems on Mix.Relativization
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Department of Mathematics, Gakushuin University, Tokyo

(Comm. by K.Ssaku YOSIDA, M.J.A., March 12, 1973)

In this paper we shall consider "relativization by a set of unary
predicate symbols" and state two theorems about it, which can be con-
sidered as extensions of the usual relativization theorem (c. Motohashi
[2]) and one sorted reductions of Fefermn’s many sorted interpolation
theorems (Theorem 4.2 and Theorem 4.4 in Feferman [1]). The key
ideas of our proofs o these theorems have already been appeared in [2]
although their proofs themselves will be omitted in this paper, and de-
tails will be published elsewhere.

Let L be a first order finitary or infinitary logic (L or L, in [1]),
U= {U,},e a set o unary predicate symbols which do not appear in L
and L the first order logic obtained from L by adding every predicate
symbol in U. For the sake o covenience, we assume that L hs nei-
ther individual constant symbols nor function symbols. Let A be a
formula in L nd B in L. Then we say that "A is a mix-relativization
formula of B (by U)" or "A is obtained rom B through mix-relativiza-
tion (by U)" if A is obtained rom B by relativization some occurrences
o quantifiers of B by predicate symbols in U. I every occurrence of
quantifiers in B is relativized by a predicate symbol in U, we sy that
A is a total mix-relativization formula o B. For example, the ormula
(Vu)(U(u)(]v)(U(v) A C(u, v)) is a mix-relativization ormula o (Vu)
(]v)C(u, v), where i, ] e I and C(x, y) is a ormula in L. Moreover if
C(x, y)has no occurrence of quantifiers, then that formula is a total
mix-relativization ormula of (Vu)(]v)C(u, v). If A is a (total) mix-
relativization ormula o a ormula in L, we simply say that A is a (to-
tal) mix-relativization ormula. For each mix-relativization formul
A, let I(A), Un(A) and Ex(A) be the set o all i e I such that U appears
in A, the set of all i e I such that U, appear negatively in A and the
set o all i e I such that U appear positively in A respectively (cf. [1]).
Hence I(A)= U(A) [3 E(A). For example, if A is the ormula above
mentioned, then U(A)-{i} and E(A)= {]}. Notice that if A is a for-
mula in L, then A is a mix-relativization ormula and I(A)-U(A)
=E(A)=. Also i A is a total mix-relativization ormula of B and
I(A)= {i}, then A=Bv*, i.e. A is the relativization ormula of B by U
in the usual sense. Then we have the ollowing two theorems.

Theorem I. Suppose Io and I1 are subsets of I, A and B are total
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mix-relativization formulas and {x}z, is a set of free variables such
that every free variable which occurs either in A or in B belongs to it.

If {(]u)U(u)}eZo, {U(x)}ez,-AB, then there is a total mix-
relativization formula C in L satisfying the following four conditions
Z)-4)

)
and

{(]u)U(u)}eo, {U(x)}- AC

{(u)U(u)},, {U(x)}, -, CE.
2) Every predicate symbol of C in L except U,i e I, occurs both

in A and in B.
3) Every free variable of C belongs to {x}e,.
4) U(C)

_
U(A) and E(C) E(B).

Theorem II. Suppose Io and I are subsets of I, A is a total mix-
relativization formula, B is a mix-relativization formula and,
and {x}e, are two sets of free variables such that every free variable
in A belongs to {x}e,.

If {(]u)U(u)}eo, {U(x)}te,-- AB, then there is a total mix-
relativization formula C in L satisfying the following four conditions
5)-S)"

5)
and

{U(Y)}eZo, {U(x)}ez, - AC

{U(Y)}eo, {U(x)}e, - CB.
6) Every predicate symbol of C in L occurs both in A and in B.
7) Every free variable of C belongs
8) U(C) U(B) and E(C) E(A).
If 1", U(x) -A(x)B and x appears neither in F nor in B, then

1" - (]u)(U(u) A(u)) B. Notice that U((]u)(U(u) A(u)))
U(A(x)) but E((]u)(U(u) AA(u))=E(A(x)) {i}. If F, U(x)-,

AB(x) and x appears neither in F nor in A, then/" A(u)(U(u)
B(u)). Notice that E((u)(U(u)B(u)))=E(B(x)) but U((vu)
(U(u) B(u)))= U(B(x))[J {i}. These two fcts show us that in Theo-
rem I we can add the condition that every ree variable of C occurs both
in A and in B but can not in Theorem II.

Remark 1. Let D and E be sentences in L and U e U. Suppose
(]u)U(u) - D E. Then by Theorem II, we have a sentence C in L
such that (]u)U(u) - D C, (]u)U(u) - C E and U(CV) U(E)
=. This means that C is an existential sentence and"DC" and

"CE" hold. This is the usual relativization theorem (cf. [2]).
Remark 2. We use Feferman’s terminology in [1]. Let L be a

many sorted logic and, A and B are two sentences in L such that

"-AB" holds. Let A* and B* be their one sorted reductions in L,
hence we can consider A* and B* as two mix-relativization sentences in
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L. Let Io=I(A*) J I(B*). Then we have
{(]u)U(u)}eo - A*B*.

By Theorem I, there is a total mix-relativization sentence C1 satisfying
1)-4) in Theorem I. Since C1 is a total mix-relativization, CI =C* for
some sentence C in L. This C satisfies: (i) every predicate in C occurs
both in A and in B, (ii) LA C and - C B, (iii) Un(C)

_
Un(A)

and Ex(C) Ex(B). This is the Feferman’s many sorted interpolation
theorem, i.e. Theorem 4.2 in [1].

Remark 3. Suppose A and B are sentences in a many sorted logic
L and IoI. If-AB, E(A)_Io and Un(B)_Io, then by Theorem
II, we have a formula C in L satisfying (i) - A C and - C B,
(ii) Un(C)Io and E(C)_Io. This is Theorem 4.4 in [1].
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