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In [1], C. Apostol generalized to a complex Banach space an
invariant subspace theorem of C. Pearcy and N. Salinas in a complex
Hilbert space [8]. In a finite dimensional complex vector space every
linear operator has at least one eigenvector (one-dimensional invariant
subspace). This result which played a fundamental role in the devel-
opment of the theory of complex vector spaces does not apply in the
case of real spaces. The purpose of this note is to show the corre-
sponding assertion of [1] in real Banach spaces. We base our argu-
ments on C. Apostol’s paper [1].

In this note, X will denote a separable Banach space over R (the
set of all real numbers) of dimension greater than two, B(X) the alge-
bra of all bounded linear operators acting in X, £(X) the set of all finite
dimensional subspaces of X. If M is a non-empty subset of X and
z e X, the distance from x to M, d(x,M), is defined by d(x,M)
=inf {|z—y|: ¥y € M}. In the sequel, a subspace means a closed linear
manifold.

Definition 1 ([5]). Given a sequence {X,} of subspaces of X, de-
fine lim inf X, to be

lim inf X, ={x ¢ X : lim d(z, X,)=0}.

It is clear that liminf X, is a subspace of X and liminf X,
=lim inf X, for any subsequence {n,} of {n}. If for every n=1, X, is
a subspace of Y, then liminf X, Climinf Y,.

Definition 2. Let ./ be a set of operators, AC $(X). Then an
invariant subspace for JJ is an invariant subspace for all operators in
.

Definition 3. Let {X,}c&(X) and (,CB(X,. We define
lim inf C, to be

lim inf C, = {T e BX): lim ( inf || T X,,—Sn||)=0}.
Sﬂecﬂ
It is clear that lim inf C, ,=lim inf C, for any subsequence {n,} of
{n}. Let C,, 9,CBX,). If for every n=1, C,C9D,, then lim inf C,
Clim inf 9,.

Lemma 1 (P. Meyer-Nieberg [6] or [5]). Let {X,} and {Y,} be two
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sequences of subspaces of X such that lim inf X, =lim inf X, for any
subsequence {n;} of {n} and X, CY,, dim (Y,/X,)<m for all n, then
dim (lim inf Y, /lim inf X,)<m.

The following Lemma 2 and Proposition have been proved in [1].

Lemma 2. Let X,, Y, e X)), C,CB(X,). IfY, is an invariant
subspace for C,, then lim inf Y, ¢s an invariant subspace for lim inf C,,,
for any subsequence {n;} of {n}. If C,, is commutative, then lim inf C,,
is commutative on lim inf X,,.

Definition 4. An operator T ¢ $(X) is called quasitriangular if
there exists {X,}C&(X) such that lim inf X, =X and T ¢ lim inf B(X,).

The concept of quasitriangularity is introduced by P. R. Halmos in
the complex Hilbert space [4] and by P. Meyer-Nieberg in the case of a
Banach space [7].

Definition 5. Let FC BX), F+0. We call F a hypercommuta-
tive set if there exists {X,}C&(X), with C, commutative and C,C B(X,)
such that lim inf X,=X and ¥ Clim inf C,.

The concept of hypercommutativity is introduced by C. Apostol [1].

Proposition. (@) If T is a quasitriangular operator then {T} is
a hypercommutative set.

(b) Let F be a hypercommutative set and denote by C the inverse-
closed and uniformly closed algebra generated by F. Then C is a
hypercommutative set.

Lemma 3. Let Y eé&(X), dim Y=n, CCBY). If Cis commuta-
tive, then there exists a one or two dimensional invariant subspace (of
Y) for C.

Proof. The proof is by induction on the dimension of Y. In the
case of one or two dimensional space (n=1 or 2), it is obvious. We
assume that it is true for spaces of dimension <n (n=3) and prove it
for an n-dimensional space. Let Z denote the space X xX. As the
sum of elements (x,, ), (%,, ¥,) € Z we take the element (x,+ x,, ¥, + ¥,).
As the scalar product, we define such that

(a+18)(x, y) =(ax— Py, ax + BY)
for (x,y)e Z and «, fe R. It is easy to see that Z is now a complex
vector space. In this space Z, we define the norm ||-||, to be
@, W o=sup {| f(@)+ifW]|: f e X* | flI=1},
where X* denote the dual space of X. Then we have |z|+|v|
=@, ) h=max {|x|,||v|} for every x, y e X. Now, for each operator
A e C we consider the operator A on Z by
Az, y)=(Az, Ay).

It is easy to see that A is a bounded linear operator on the complex
normed linear space (finite dimension). Let C={A:Ae(}. Then C
is a commutative set of B(Z) (by commutativity of C). If every vector
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of Z is an eigenvector of all operators in C, then every vector of X is
an eigenvector of all operators in C, in this case our lemma is proved.
Asgsume therefore that there exists a vector in Z which is not an eigen-
vector of some operator A in {. Let 2=« +13 be one of eigenvalues of
Aand Z . the set of all eigenvectors of A (together with the null vector)
corresponding to 1. Since AT=TA, we have AT(x,y)=TA(x,v)
=T, y)=1T(z, y) for (z,y) e Z,, i.e. T(x,y) € Z,. The space Z, is an
invariant subspace for C. We consider X, spanned by the vectors
1y Y15 gy Yy - - + Where (2, YD), (25, ¥y), - - € Z,. By the construction, the
space X, is an invariant subspace for £. The space X, is a subspace
of X different from the null space and the whole space. The space X,
is of a dimension <n—1. Since by assumption our lemma is true for
spaces of dimension <n, X, must contain a one or two dimensional
invariant subspace for C. This proved our lemma.

Lemma 4. Let Y ¢ £(X), dim Y=n, CCBX). If Cis commuta-
tive, then there exist subspaces Ly, Ly, -+, Ly_1, L, with the following
properties;

(i) {0}=LycL)C...-cL,_,CL,=Y,

(ii) AL,cL; (j=0,1,2,...,m) forall AeC,

(iii) dim (L;/L;_p=1or 2 (j=1,2,---,m).

Proof. The proof is by induction on the dimension of Y. If
n=1, 2 the statement is obvious. We assume that it is true for spaces
of dimension <n and prove it for an n-dimensional space. Consider
the adjoint operators A*, B*, ... (4, B, --- € () on the dual space Y*,
since they have a one or two dimensional common invariant subspace
(by Lemma 8), say W. Let us denote by W° the anihilator (in Y**=7)
of W, then W°is an n—1 or n—2 dimensional subspace of Y [3, Theo-
rem 1 of §17] and W° is invariant for C. Consequently we may con-
sider the operators in C as linear operators on W°, and by assumption,
our lemma is true for spaces of dimension <%, we may find L, (={0}),
L,.--,L,_, (=W", satisfying the conditions (i) ~(iii). WesetL, =Y.
This proved our lemma.

Theorem. Let F(C B(X)) be a hypercommutative set containing
a non-zero compact operator K. Then there exists a proper invariant
subspace (of X) for &.

Proof. Let X, e&(X) and C,C B(X,), C, commutative set such
that lim inf X, =X and ¥Clim inf C,. Since KT=TK for every T ¢ F
and K=+0, we may assume that the null space of K is zero, for other-
wise K-%0) is a proper invariant subspace for &. Therefore there
exists ec X, |e||=1, Ke+0, and we can choose a with 0<a<1 and
a|K|<|Ke|. Since eecliminf X,=X, we may suppose d(e, X,) <«
for any n. By Lemma 4, there exists a chain of invariant subspaces
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for C, ordered by inclusion;
{O}=LpcLic...cLr_CLr=X,,
dim (L?/Ly_) <2 GG=12,.-.,m).
We have d(e, L})=1>a«, d(e,L*)<w«. Thus for each n there is a great-
est j, j, say, such that d(e, L") =«. Let F,=L", G,=L?,.,. Then
d(e,F,)=a, dle, G,)<a (n=1). It follows at once from the first of
these inequalities that, for any subsequence {n;} of {n}, e ¢ lim inf F',,,.
Since d(e, G,)<a, there exists a bounded sequence {z,}C Gy, i.e. || Z,]]
<a+]|e]|=a+1. Using the compactness of K, we have a subsequence
{nx} of {n} such that lim Kz, =x e X. We show next, that x belongs
to liminf G,,. Since FClim inf C, and K € &, there exists a sequence
K, € C, such that lim | K| X, —K,||=0, we obtain also
d(ﬁ’}, Gng)é“ x_Kxnk” + d(Kx'nk’ Gnk)
=d(Kx,,— K, Xn,s Gr,)
as k—oo, which means xeliminfG,. Now, on the other hand,
|[Ke—x|=lim |Ke— Kz, ||<«| K| <|Ke|. Thus we have x+0, and so
lim inf G,, will be a proper invariant subspace for F unless lim inf G,
=X (by Lemma 2). Since liminf F,,X for every subsequence {n;}
of {n}. Now, if lim inf F,,={0} for every subsequence {n;} of {n}, by
Lemma 1, dim (lim inf G,;)<2. Therefore lim inf G,,+X. Thiscom-
mpletes the proof of our theorem.

As an immediate consequence of Theorem and Proposition, we have
the following corollary.

Corollary. Let T be a quasitriangular operator acting in X and
denote by F the inverse-closed, uniformly closed algebra generated by
T. If &F contains a compact operator, K=+0, then F has o proper
imvariant subspace in X.
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