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In [1], C. Apostol generalized to a complex Banach space an
invariant subspace theorem of C. Pearcy and N. Salinas in a complex
Hilbert space [8]. In a finite dimensional complex vector space every
linear operator has at least one eigenvector (one-dimensional invariant
subspace). This result which played a fundamental role in the devel-
opment of the theory of complex vector spaces does not apply in the
case of real spaces. The purpose of this note is to show the corre-
sponding assertion of [1] in real Banach spaces. We base our argu-
ments on C. Apostol’s paper [1].

In this note, X will denote a separable Banach space over R (the
set of all real numbers) of dimension greater than two, _(X)the alge-
bra of all bounded linear operators acting in X, G’(X) the set of all finite
dimensional subspaces of X. If M is a non-empty subset of X and
x eX, the distance from x to M, d(x,M), is defined by d(x,M)
=inf {11 x--y I[" y e M}. In the sequel, a subspace means a closed linear
manifold.

Definition 1 ([5]). Given a sequence {X} of subspaces of X, de-
fine lim inf X to be

lim inf X--{x e X" lim d(x, X)=0}.
It is clear that lim inf X is a subspace of X and lim infX

=lim inf X or any subsequence {n} of {n}. If or every n>__l, X is
a subspace of Y, then lim inf X lim inf Y.

Definition 2. Let be a set of operators, .(X). Then an
invariant subspace for is an invariant subspace or all operators in

Definition 3. Let {X}’(X) and C.(X). We define
lim in 5’ to be

lim inf C= {T e_(X)" lim ( inf T]X--SII)--O}.
It is clear that lim inf --lim inf or any subsequence {n} of

{n}. Let , 2_(X). If or every n__>l, 2, then lira inf
lim inf 2.
Lemma 1 (P. Meyer-Nieberg [6] or [5]). Let {X} and {Y} 5e two
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sequences of subspaces of X such that lim inf X-lim inf X for any
subsequence {n} of (n} and X Y, dim (Y/X)<=m for all n, then

dim (lim in Y/lim inf X)=<m.
The ollowing Lemma 2 and Proposition have been proved in [1].
Lemma 2. Let X, Y e C(X), C_(X). If Yn is an invariant

subspace for , then lim inf Y is an invariant subspace for lim in C,
for any subsequence {n} of {n}. If C is commutative, then lim in
is commutative on lim in2 X.

Definition 4. An operator T e _(X) is called quasitriangular
there exists (Xn}(X) such that lim in X--X and T e lim inf .(X).

The concept of quasitriangularity is introduced by P. R. Halmos in
the complex Hilbert space [4] and by P. Meyer-Nieberg in the case o a
Banach space [7].

Definition 5. Let _(X), :/:. We call a hypercommuta-
tire set if there exists (X} C(X), with Cn commutative and 5" (Xn)
such that lira inf X--X and lira inf Cn.

The concept of hypercommutativity is introduced by C. Apostol [1].
Proposition. (a) If T is a quasitriangular operator then (T} is

a hypercommutative set.
(b) Let be a hypercommutative set and denote by C the inverse-

closed and uniformly closed algebra generated by . Then C is a
hypercommutative set.

Lemma 3. Let Y e (X), dim Y=n, Cc(Y). If C is commuta-
tive, then there exists a one or two dimensional invariant subspace
Y) for .

Proof. The proof is by induction on the dimension of Y. In the
case of one or two dimensional space (n--1 or 2), it is obvious. We
assume that it is true for spaces of dimension n (n>__3) and prove it
for an n-dimensional space. Let Z denote the space X X. As the
sum of elements (x,, y), (x, y) e Z we take the element (x + x, y+ y).
As the scalar product, we define such that

(/ ifl)(x, y)- (ax-- fly, ax / fly)
for (x,y) eZ and a, fleR. It is easy to see that Z is now a complex
vector space. In this space Z, we define the norm I" 110 to be

(x, Y) 10-- sup {I f(x) + if(y) l" f e X*, f <= 1},
where X* denote the dual space o X. Then we have
_>_ (x y)10 >=max {Ixll, lYl} or every x, y e X. Now, for each operator
A e C we consider the operator on Z by

A(x, y)--(Ax, Ay).
It is easy to see that A is a bounded linear operator on the complex
normed linear space (finite dimension). Let -(fi_" A e C}. Then
is a commutative set o _(Z) (by commutativity of C). I every vector
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of Z is an eigenvector of all operators in , then every vector of X is
an eigenvector of all operators in C, in this case our lemma is proved.
Assume therefore that there exists a vector in Z which is not an eigen-
vector of some operator A in C. Let 2=a+i be one of eigenvalues of
A and Z the set of all eigenvectors of A (together with the null vector)
corresponding to 2. Since AT--TA, we have AT(x,y)--TA(x,y)
=T(x, y)--T(x, y) for (x, y) e Z, i.e. T(x, y) e Z. The space Z is an
invariant subspace for C. We consider X spanned by the vectors
x, y, x2, Y2, where (x, y), (x2, y), e Z. By the construction, the
space X is an invariant subspace for L’. The space X is a subspace
of X different from the null space and the whole space. The space X
is of a dimension =<n--1. Since by assumption our lemma is true for
spaces of dimension n, X must contain a one or two dimensional
invariant subspace for L’. This proved our lemma.

Lemma 4. Let Y e ’(X), dim Y--n, C(Y). If C is commuta-
tive, then there exist subspaces L0, L1, L_I,L with the following
properties

(i) {0}--L0LI...L_IL--Y,
(ii) AL L (]= O, 1, 2, ..., m) for all A e C,
(iii) dim (L/L_I) 1 or 2 (]-- 1, 2, ., m).
Proof. The proof is by induction on the dimension of Y. If

n-1, 2 the statement is obvious. We assume that it is true for spaces
of dimension n and prove it for an n-dimensional space. Consider
the adjoint operators A*, B*, (A, B,... e C) on the dual space Y*,
since they have a one or two dimensional common invariant subspace
(by Lemma 3), say W. Let us denote by W the anihilator (in Y**--Y)
of W, then W is an n--1 or n--2 dimensional subspace of Y [3, Theo-
rem 1 of 17] and W is invariant for L’. Consequently we may con-
sider the operators in L’ as linear operators on W, and by assumption,
our lemma is true for spaces of dimension n, we may find L0 (={0}),
L, ., L_ (-- W), satisfying the conditions (i)(iii). We set L-- Y.
This proved our lemma.

Theorem. Let ((X)) be a hypercommutative set containing
a non-zero compact operator K. Then there exists a proper invariant
subspace (of X) for .

Proof. Let X e ’(X) and C_(X), C commutative set such
that lim in X X and lim inf L’n. Since KT-- TK or every T e
and Kg=0, we may assume that the null space of K is zero, or other-
wise K-l(0) is a proper invariant subspace or . Therefore there
exists e e X, e II- 1, Ke =/= O, and we can choose c with 0 a 1 and

IIKIIIIKel[. Since e e lim inf X--X, we may suppose d(e,X)a
for any n. By Lemma 4, there exists a chain of invariant subspaces
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for C ordered by inclusion;
{0} L L Lm_ Lm-Xn,

dim (L/L )<2 (]-- 1 2 m)
We have d(e, L)=la, d(e, L)a. Thus or each n there is a great-
est ],] say, such that d(e L)>a. Let F L G-L ThenJn 2n+1"

d(e,F)a, d(e, Gn)<a (nl). It ollows at once rom the first
these inequalities that, or any subsequence {n} o {n}, e e lim inf F.
Since d(e,G)<a, there exists a bounded sequence
a+ e a+ 1. Using the compactness of K, we have a subsequence

{n} o {n} such that lim Kx=x e X. We show next, that x belongs
to lim inf G. Since lim in C and K e , there exists a sequence
K e C such that lim ]]K]X--K]]=O, we obtain also

d(Kx--Kx,, G,)

as k, which means x eliminfG. Now, on the other hand,
[[Ke--xl[=lim [[Ke--Kx]a IlKl[[IKell. Thus we have x0, and so
lira inf G, will be a proper invariant subspaee for unless lim inf G
=X (by Lemma 2). Since lim inf FtX for every subsequenee {nt}
of {n}. Now, if lira inf F,= {0} for every subsequenee {n} of {n}, by
Lemma 1, dim (lira inf G)2. Therefore lim inf GX. This eom-
mpletes the proof of our theorem.

As an immediate consequence of Theorem and Proposition, we have
the following corollary.

Corollary. Let T be a quasitriangular operator acting in X and
denote by the inverse-closed, uniformly closed algebra generated by
T. If contains a compact operator, KO, then has a proper
invariant subspace in X.
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