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Consider a system of nonlinear integral equations of Volterra-type
¢
(P) 2(®) =7 O+ 9(t, s, a(s)ds.

Recently R. K. Miller and G. R. Sell [1] proved some fundamental
theorems of (P) under fairly general assumptions on f(f) and g(¢, s, x)
similar to the Carathéodory-type. They showed that the cross-section
F@®)={y: y==(), where x is some solution of (P)}
is compact in R* for all ¢t ¢ [0, ay), where a, is either co or a finite
number such that there is a solution z(?) of (P) for which lim sup,,,, [¢(?)|
=oo. This appears to be a generalization of H. Kneser’s theorem to
integral equations.

For the case where g(t, s, ) is a bounded continuous function of
(t,s,2) on {0=<s=t=Za}xR", Sato [3] has shown that F(¢) is a con-
tinuum, i.e., a compact and connected set for all ¢ € [0,a]. One of the
present authors later proved in [4] that the family of all solution-curves
is a continuum even in C[0, «].

We think that it is interesting to know whether F'(¢) is a continuum
or not for all te¢[0,«,) under the weaker assumptions of Miller and
Sell. The purpose of this note is to give an answer in the affirmative
for this problem. Moreover, we can demonstrate that the family of
solutions of (P) is also a continuum in the Fréchet space Cl[0, a;).?

Since the method we employed in this paper mainly depends on
Carathéodory iterates, there is no need in our proof to use the approxi-
mate functions g, to ¢ satisfying the Lipschitz condition which was
employed in [3] and [4].

We assume the hypotheses (H1)-(H5) on f(¢) and g(¢, s, ) used in
our previous note [5]. We shall show the following main theorem.

Theorem. Let the functions f and g satisfy (H1)-(H5), then there
exists a number a, >0 such that for each t e [0, ay) the set F(t) is com-
pact and connected as a subset of R*. Moreover the number ay s

1) After completing this manuscript, we found that W. G. Kelly (Proc. Amer.
Math. Soc., 40, 1973) proved a local Kneser property, that is, the set {x(f) € C[0,d];
x(t) is a solution of (P) on [0,d]} is compact and connected in the space C[0,d] for
any d<ay.
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maximal in the sense that either a,=co or there exists a right maxi-
mally defined solution x(t) of (P) whose domain of definition is the
wnterval [0, ay).

Proof. It is sufficient to show that F(c¢) is connected for each
cel0,ay,). Suppose the contrary. Since F'(¢) is compact, F'(¢) can be
expressed as a union of two disjoint nonempty compact sets, i.e., F(c)
=F,UF,, where F', and F, are nonempty compact sets such that F,NF,
=¢. Hence we can choose an open set O, such that F;,C O, and O,NF,
=¢. Let ¢,(¢) and ¢,(t) be continuous solutions which pass through
g, € F, and g, e F, respectively. By Proposition 2 in [5] we see that for
some 7,>0 and >0, the values of any e-Carathéodory iterates ¢,(¢; &, ¢)
at & of ¢,(t) belong to V(F*(¢), r,) on [0, c] ({=1,2) for every positive
e (Z¢) and every & € [0, ¢]. Then our definition implies that the relation

8ilt; & 0 =F(t) +[ 9t, 8, vls; & )ds (1)

holds, where the function (t; &, ¢) associated with ¢,(t; &,¢) is defined
by

J(©0) on [—e, 0]
Vit &, )= (t)=¢:(l; &, ¢) on [0, £]
pi(t—e; & ¢) on (&, cl.

We shall show that g;(c; &,¢), (1=1,2) is continuous in ¢ € [0, c] for each
fixed e € (0,¢,]. The relation

¢i(c; &, 5)_¢i(c ;& 5)2'[: {g(c; S, ‘P‘i(s; &, 6))—9(0, S, ‘If'i(s; 5’ 6))}d8

is valid by (1). Moreover by the definition of -, y;(s; &,¢) € V(F*(¢), 1y
for any s in [0, ¢] and for any & in [0, c]. Hence, if we take m(¢, s) in
(H3) corresponding to l=c¢ and K=V (F*(c), 1), ¥:s; & ¢) satisfies
|g(t, 8, 9i(s; & €))|<m(t,s). Thus, to prove the continuity of ¢,(c; &,¢)
in &, we must verify that

lim (85 & ©) =1nilt; €, ¢) (2)

§r—§

for almost every fixed £ [0, ¢]. For simplicity, we put ¢(t)=¢,(®), ¢(¢; &)
=¢,(t; & ¢ and Y(t; &)=+(t; & ¢). First we shall show that (2) holds
for every t € [0, c] if &, ]&, i.e., &, tend to & monotonely decreasing as
k—oo. Let £¢[0,¢). For a fixed t € [0, £] we obtain by (1) that y(t; &)
=(t; &)=¢(f), so that (2) holds. We take &, such that the inequality
£<&;<e holds. Then by the definition of +(f; &), we have for
te [ &+¢] that

#(t) when ¢ € [, &]

Yt &) =17(0) when £ € (&, ¢l

d(t—e) when ¢ € [¢, £+¢].
Let t € (&, ¢] be fixed. Then (¢; &)=1(t; &=,(0) for sufficiently large
k such that £<&,<t. Next let te(e, &£-+¢] be fixed. Then (t; &) =(t; &)
=d¢(t—e) for &, such that £<&,<e. Hence (2) holds for every te(§, £+l
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and consequently for every ¢ ¢ [0,&+¢]. For each fixed t e (&+¢, £+ 2¢]
we take such &, that £¢<g,<<t—e. Since the equality

v(t; &)= d(t—e; &)
= f(t—o)+ j e 9(t—e,s, ¢(s))ds+j; 9(t—e, s, F(O)ds

t—e
+[ 7 gtt—e 5, 4s—enas
holds, we have

[t 3 &) — it e)lgf’lgu—e, s, ¢<s)>fds+j:" |9(E—e, 5, F(O))|ds
<2 rk m(t—e, s)ds.
3

Hence we can verify (2) for each fixed t e (§+¢, £+ 2¢] and consequently
for every t € [0, £+2¢]. For each fixed ¢ € (¢4 2¢, £+ 3¢] we take such &,
that ¢<¢&,<t—2¢. Then we have

Wt &)= Flt—e) +f 9(t—e, s, §(s))ds + j e g(t—e, 3, F(0))ds

+Iek+‘ 9(t—e, s, g(s—e))ds +J:_: 9t —e, 8, 9(s; &x)ds,
so that

it E0—v(t; 91 lott—e, 5, 6(5)] ds+j:" |9E—e, s, 7(O)| ds
+2 f : |9(E—e, 5, f(s—e))| ds
+ Us (gt —e, 8,08 &) —g(E—e, 8, ¥(s; e))}ds’

gz(ﬁk m(t—e, s)ds +J:i+ m(t—e, s)ds) +1I

holds. First two integrals tend to zero as &,—¢. Since (2) is verified
for every telg +e, &£+ 2¢], from (H2) (ii) and (H3) we see by the L.d.c.th.
that lim,,.. I=0. Thus we can show (2) for each fixed ¢ € (6 +2¢, &+ 3]
and for every t € [0, £+ 3¢]. Continuing in this fashion n times, we have
for each ¢ ¢ (&+ne, £+ (n+1)e] and &, satisfying &<g&, <<t—mne that

W(t; &) —w(t; s)lgsz m(t—e, s) ds

+ J e {gt—e, 8,9(s; &) —0g(t—e, 5, ¥(s; O)ds),

where E,=[¢, &1U[E+¢, &+e]lU - - - ULE+(—1)e, &+ (n—1)e]. Hence
by induction, we have (2) on [0, £+ ne¢] for all positive integer n. If we
take 7 so large that &£4+mne=c, (2) can be verified to hold for every
t e [0, cl.

For ¢ e [¢, ¢), it is slightly easier to show that (2) holds at £ for every
tel0,cl as &, }¢&. Similarly we can show that (2) holds at & € (0, ¢] for
every fixed t € [0, ¢] except one point ¢ if £,1¢, i.e., &, tend to & mono-
tonely increasing as k—co. Therefore ¢,(c; &, ¢) is continuous in £¢[0, cl.
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That ¢,(c; 0,)=g¢,(c; 0,¢) is trivial.
We shall now define a curve
Bo={HCiclhd,  —lses0
é.(c; clzl,e), 0<r<l1.
Then this curve B,(z) is a continuous curve which connects two points
¢, and q,. Hence B,(r) must pass through some point d, in 00,NK,
where d,=¢;(c; &,¢) (t=i(e)=1 or 2) and ¢=£&(e), both depending only
one. Consequently we can find a sequence {¢,} such that
lime,=0 (monotonely decreasing), i(e,)=1 or 2

and
limd,=d,c00,NK, where d,=d,,. (3)

n—oo

Moreover by taking a suitable subsequence of {¢,} if necessary, we may
assume that i(c,) =const. (=1 for example).
We put
¢n(t) =¢1(t s Ens 5n)9 ‘!"n(t) =‘,’1(t HYI En),
where &,=£(¢,). Hence

$u(O)=F )+ f 9(t, 8, al8))ds (4)

for each t ¢ [0, c], where

70 on [—e,, 0]
Vu(®) = {6:(8) =, (t) on [0, &,]
¢n(t'—5n) on (ém C].

As proved in Proposition 2 in [5], we can prove that {¢,(-)} is relatively
compact in C([0, cl; V(F*(c),7,)). Hence we can find a subsequence
{k}{n} and ¢,(-) € C(0, c1; V(F*(c), 1)) such that

lim (D) =}cim V() =dy(t) uniformly in ¢ € [0, c]. (5)

Then (4) implies that ¢,(t) is a continuous solution of (P) on [0,c]. By
(8) and (5), we have
lim d,=lim ¢,(c; &, er)

ko0 k-

=7 @+1im | gle, s, yu(s)ds

=7@+] gte, s, (s ds
=¢(c)=d, € 90,NK,
which contradicts the assumption that F(¢c)=F,UF, and F,NF,=¢.

Remark 1. (H5) is only needed in the proof of the latter half of
the Theorem.

Remark 2. As seen in Proposition 2 in [5], if for a fixed ¢>0, &-
Carathéodory iterates {¢;(:; &, &)}ecro; 18 relatively compact in
C(0,c]; K), then we have lim,._, ¢:(t; &,e)=¢:(t; & ¢ uniformly in
te [0, cl.
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In the Frechet space ([0, ;) with compact-open topology, we have
the following result.

Corollary. The solution family F of (P) is also a continuum in
the Frechét space Cl0, ay).

Proof. To show this, it is sufficient to prove that & is a continuum
in the Banach Space C[0, c] for every c € [0, «y). Define a family F[e]
of continuous functions on [0, ¢] by the set of ¢/-Caratheodory iterates
at every £ e [0, ¢] for all solution of (P) and all ¢’ € (0, ¢], that is

Flel={x(-,&,¢) e Cl0,c]: 2(-) e F, 08¢, 0< <el

Then Fle] is decreasing as ¢ 0, F[c] DF and Fle] is relatively compact
in CI[0, ¢] by Proposition 2 and the Remark after it in [5]. Hence if
Fle] is verified to be connected, the closure F[e] in C[0, ¢] is a conti-
nuum. Now take any two functions ¢,(- ; &,¢) and ¢,(- ; &,¢) of Flel,
where ¢,(-) and ¢,(-) are solutions of (P). Since ¢;(-; &,¢) (¢=1,2) con-
sidering & as parameter varies continuously in ([0, ¢], the family
{6,(-5 & e); £,<E<c} is a continuous curve in ([0,c], connecting
G 5 &,e) and @i(- 5 ¢,e)=¢,(-). The family {¢,(-; &, ¢); 0=&=c} con-
nects ¢,(-) to ¢,(-; 0,¢,)=¢,(- ; 0,¢,) continuously. Finally, the family
{6,(-; & 6); 0<6<&} is a continuous curve in ([0,c] connecting
&,(-;0,¢) and ¢,(- ; &,6). Thus we have proved that Fle] is (arcwise)
connected. To complete the proof, it is sufficient to show that (M Fle]
=%. For any ¢(-) e " Flel, by definition we have a sequence {¢,(-)}
such that lim, .. ¢,(:)=¢(-) in C[0, c], ¢.(-) € F[¢,] (lim,_., ¢,=0) and

(D) =S (1) +f: 9(t, 8, Y, (8))ds for each t ¢ [0, c]

where +,(-) is the function associated with ¢,(-). Since lim,_., ¥,(f)
=¢(t) uniformly in te[0,c] is verified, by letting n tend to o we
see that ¢(t) is a solution of (P), i.e., ¢(-) e F. Since N FIDF is
trivial, we see that N Fc]=9.
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