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(Comm. by Kunihiko KODAIRA, M. J. A., April 18, 1974)

§ 1. Main result. Let K be a field and ¢,, - - -, , indeterminates.
Let m be a positive integer. In this paper we consider the ring R, ,

generated, over K, by all the monomials ¢#- . -¢2» such that i} D=,
{=1

Let S, . be the localization of R, , at the maximal ideal generated by
all t71...¢2» in R,,,,. In [2] Grobner showed that the local ring S, ,, is
a Macaulay ring of dimension n. In this paper this ring is called a
Veronesean local ring.

In general, it is well known that in a Macaulay local ring the
number of the irreducible components of an ideal generated by a system
of parameters is an invariant of the ring. This invariant is called the
type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring
if and only if the ring has type one.

The aim of this paper is to prove the following theorem.

Theorem. Let S,,, be a Veronesean local ring. Then

type S,,n=1 if n=0 (mod. m)
and
type Sn.m=<n+ m—r—1
n—1

As a direct consequence of the theorem, we have the following

Corollary. A Veronesean local ring S,,, is & Gorenstein ring if
and only if n=1 or n=0 (mod. m).

§ 2. Proof of theorem. For a non-negative integer s, we denote
by P(s) the set of ordered n-tuples (p)=(p,, --:,Dp,) of non-negative

) if n=r (mod. m) 0<r<m.

integers p,; such that f p,=sm. We also denote by ¢® the monomial
i=1

tpr...tz, With the same notation as in §1, the ring R, ,=K[t®|(p)
e P(1)]. Let m be the maximal ideal generated by all ¢®, (p) e P(1),
and q the ideal generated by ¢, - - -, t?. Then q is an m-primary ideal.
Since the localization S, , of R, , at m is a Macaulay local ring of
dimension » and since {t7, ---,t"} is a maximal regular sequence of
S,.,n (cf. [2]), the type of S, is given by the dimension of the K-vector
space (q: m)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks: A
monomial ¢ ig in R, , if and only if (p) is in P(s) for some s. If (p)
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is in P(s), then ¢‘» is in m®. The ideal m® is generated by all t‘®, (p)
e P(s). Let Q(s) be the set consisting of all (p) in P(s) such that p,<m
for 1<i<n. Let (p) be in P(s). Then t® is in g if and only if (p) is
not in Q(s). Hence m*Cq if and only if Q(s) is the empty set.

Lemma 1. Assume that n>2 and m>2. Let k be the integer
such that n—n/m<k<n—n/m+1. Then m*Cqand m*~'Zq.

Proof. Let (p) be in P(k). Then }n] p,=km>(m—1)n. Hence
i=1

p;=>m for some j. This shows that m*Cq. Next we show that m*~'zq.
In order to prove this it is enough to show that Q(k—1) is not the
empty set. First we consider the case when n>m. Let d=(m—1n
—(k—1)m. Then d is a non-negative integer. Since n>m and km
—(m—=1n>0, we have n—d=n—m+km—(m—-1n>0. If d=0, we
set p,=m—1 for 1<i<n. If d>0, we set p,=m—2 for 1<i<d and
p;=m—1 for d+1<i<n. Then (p)isin Q(k—1). Next we consider
the case when m>n. In this case we have k=n. Let m=qn+w,
0<w<n. Setp,=n—1)qand p;=n—-1)g+w for 2<i<n. Then (p)
isin Q(k—1). Hence in any case Q(k—1) is not the empty set. q.e.d.

We remark that if n>2 and m>2, then the integer % in Lemma 1
is not less than 2.

Lemma 2. Assume that n>2 and m>2. Let k be the same
integer as in Lemma 1. If s<k—2, then for each (p) in Q(s) there
exists (u) in PQQ) such that p;+u,<m for 1<i<n.

Proof. Set ¢;=m—p;. Then 0<¢,<m and i} (¢;—D=m—s8)m
i=1
—n>m—k+2m—n>m. Hence we can choose integers u; so that
qi——lzuizoand}njuizm. Then p; +u; <<m. q.e.d.
i=1

Lemma 3. Assume that n>2 and m>2. Let k be the same
integer as in Lemma 1. Then q: m=q+m*.

Proof. Since m*Cq by Lemma 1, we have g+ m*'Cq: m. We
show the opposite inclusion. Let z be an element in g: m. We can
write =3 a(,,t® +¥, where y is an element in q+m*~', a(,, are elements

in K and the sum )] is taken for all (p) in Q:ID2 Q). We show that
Jj=0

@y =0 for all (p) in Q. Let (¢) be in Q. Then by Lemma 2 there
exists (v) in P(1) such that ¢;+v,<m for 1<i<n. Let Q be the set
consisting of all (p) in Q such that p,+v,<m for 1<i<n. Since xm
Cq and ymCq by Lemma 1, > a, t¥*? is in q, where the sum >’
is taken for all (p) in Q’. Therefore we have a,,=0 for all (p) in Q’,
and hence a,=0. This shows that z is in q+m*~. g.e.d.

Before proving the theorem, we remark that if m**'Cq, then the
dimension of the K-vector space (q+m”*)/q is equal to the number of
elements of Q(%).



No. 4] Invariant of Veronesean Rings 289

Proof of theorem. For n=1orm=1, S, , is a regular local ring,
hence it is a Gorenstein ring, that is, type S, »=1. Therefore it is
enough to prove the theorem for n>2 and m>2. In case when n=0
(mod. m): Let n=mq. Then the integer % in Lemma 1 is equal to

(m—1)g+1. Since ipi=(m—1)qm=(m—1)n for (p) in P(k—1), Q(k

—1) consists of only one tuple (m—1, -..,m—1). Hence by Lemma 3
we have type S, »=1. In case when n=7r (mod. m) 0<r<m: Let n
=mq+r. Then k=(m—1)g+7r. Let Q be the set of n-tuples (q)

=(qy, - +,q,) such that ¢;>0 for 1<i<n and Zn:qi=m—fr. Since
i=1

i (m—1—p;)=m—r for every (p) in Q(k—1), the map Q(k—1)—Q’

i=1

defined by (p)—(q), ¢;=m—1—p,, is a bijection. Hence type S, . is
equal to the number of elements of Q. Obviously it is equal to

n+m—r—1
( n—1 ) q.e.d.
Remark. If the ground field K has characteristic zero, R, ,, is the
ring of invariants of a cyclic group of order m acting on K[t ---,t,].

In this case, our results are closely related to K. Watanabe [5] and
[6].*)

§ 3. Supplementary results. In this section we give some results
on the connection between the type, the embedding dimension and the
dimension of a Veronesean local ring. Let T be the polynomial ring

over K, in (n_;,@l_w indeterminates X ,,, (p) e P(1). Let ¢: TR, ,

be the ring homomorphism defined by ¢(X,,)=t®. Let S be the local-
ization of T at the maximal ideal of T generated by all X, () € P(1).
Since the kernel of ¢ is generated by all X, X, —X,,X ), i+ 2=,
+w,; for 1<i<n (cf. [2]), the local homomorphism +: S—S,, ,, induced
by ¢ is a minimal embedding of S, ,,, that is, the kernel of + is con-
tained in the square of the maximal ideal of S. Hence the embedding

dimension of S, ,, is equal to (n";"f‘l_1> We first note that S, , is
a regular local ring if and only if n=1 or m=1. This follows from
the fact that S, , is regular if and only if (n';”_@fl>=n In [2]
Grobner showed that the kernel of ¢, and hence the kernel of 4, are
2m+n—1

ini _(e+1
minimally generated by c_< 5 )—( "1

) elements, where ¢ is

the embedding dimension of S, ,,, that is, e=<n';ﬁ_”_@1_1). Hence S, .,

*  Especially, in the characteristic zero case, the theorem in §1 is an easy
consequence of Lemma 6 in [5] or of Lemma 7 in [6]. In the positive characteristic
case, however, the theorem is not contained in [5] and [6].
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is a complete intersection if and only if c=e—n. We now show the
following

Proposition 1. A Veronesean local ring S,,, which is not a regu-
lar local ring is a complete intersection if and only if n=m=2.

Proof. If n=m=2, then c=e—n=1. Hence S,, is a complete
intersection. Conversely assume that (n, m)+#(2,2). By the corollary
in §1 we may, furthermore, assume that n=mq for some positive

Zmn+jb1—1)=de, where d=[] 2m+n—4)/@m+1-0).
i=1

Since m+m—9)/(m+1—9)>Cm+n—10)/2m+1—14) for 1<i<m—1
and since n—2(n+m)/(m+1)=m{qg(m—1)—2}/(m+1)>0, we have
e—2d>0. Therefore we have c—e+n=(¢/2)(e—2d—1)+n>0. This
shows that S, ,, is not a complete intersection. q.e.d.

If n>8 and m>2 and if =0 (mod. m), then S,,, is an example
of an n-dimensional normal Gorenstein local domain which is not a
complete intersection.

Proposition 2. If a Veronesean local ring S, . 18 not a regulor
local ring, then the following inequality holds;

emdim S,,,—dim S,,,,>type S, u-

Proof. Since emdim S,,,,—dim S,,,,>0, the inequality obviously

holds when n=0 (mod. m). Consider the case when n=7r (mod. m)

. . s+1\_ & (1 n+m—1
0<r<m. Since, in general, (t_‘_l)_é(t), we have( n—1 )

=(n+1;:v_—{"—-1)+h, where h= <”+Z"_“2i—1>. If n=2, then r=2

integer q. Write <

and m>2. Hence h=n=2. If n>2, then hz(n'l""n@__g_l)z(z:;)

+1=n. Therefore we have (n-l;bﬁfl)—n}_(n'}'?:{—l) for n>2
and m>2, and this is the required inequality. q.e.d.

Remark. In general, for a Macaulay local ring R, the following
inequalities hold : (1) multiplicity R >emdim R—dim R+ 1 (Abhyankar
1] ; (2) multiplicity R>type R+1 if R is not regular (Engelken, cf.
[3D). For a Macaulay local ring R which is not regular, the inequality
emdim R—dim R>type R does not hold in general. In fact, consider
the ring R=K[X,Y]/(X,Y)!,,t>2. Then R is a Macaulay local ring
of dimension zero, and has embedding dimension 2 and type t. Hence,
for ¢>3 the inequality does not hold.
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