137. On Isolated Components of Elements in a Compactly Generated 1-Semigroup

By Derbiau F. Hsu*)

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Recently, Murata and Hsu [2], [3] have presented analogous results of [4] for elements of an l-semigroup with a compact generator system. In [1] by defining an isolated component, authors have done a continued work of [4] to investigate the ideals which can be represented as the intersection of a finite number of f-primary ideals. The purpose of this note is to generalize results in [1] to elements in a compactly generated l-semigroup with a compact generator system.

Let L be a cl-semigroup with the following conditions as same as in [2], [3]:

- (a) If M is a φ -system with kernel M^* , and if for any element a of L, M meets $\Sigma(a)$, then M^* meets $\Sigma(a)$.
- (β) For any φ -primary element q of L, q:q=e. Moreover, if for any φ -system M, $\Sigma(r(q))$ meets M, then $\Sigma(q)$ meets M.

Throughout this note, we shall denote r(a) as the φ -radical of an element a of L. Other terms are as same as in [2], [3].

1. Isolated components. Definition 1.1. Let a be an element of L and M be a φ -system. The isolated component a(M) of a determined by M will be defined as the supremum of all $\{a:m\}$, m runs over M, when M is not empty. a(M) is defined to be a, when M is empty.

As in [3], we have assumed that there is such element x for any $a \in L$ and any $u \in \Sigma$ with $\varphi(u)\varphi(x) \leq a, x \in \Sigma$. Then there exists such element a: m in L and it can be seen from (3.2) in [3] that $a \leq a(M)$.

Lemma 1.2. Let M^* be any kernel of a φ -system M. If $x \in \Sigma(\alpha(M))$, there exists an element m^* of M^* such that $\varphi(m^*)\varphi(x)$ is less than α .

Proof. Since $x \in \Sigma(a(M))$, we have $x \not\subseteq a(M) = \sup \left\{ \bigvee_{m \in M} N_m \right\}$, when M is not empty (if M is empty, it is trivial), where N_m is the set of the compact elements u's such that $\varphi(m)\varphi(u) \not\subseteq a$, and \bigvee denotes the settheoretic union. Then we can find a finite number of elements x_i of $\bigvee_{m \in M} N_m$ such that $x \subseteq \bigcup_{i=1}^n x_i$. Suppose that $x_i \in N_{m_i}$, then $\varphi(m_i)\varphi(x_i) \subseteq a$, $x \subseteq \bigcup_{i=1}^n x_i \subseteq \bigcup_{i=1}^n \varphi(x_i)$, $\varphi(x) \subseteq \bigcup_{i=1}^n \varphi(x_i)$. Moreover, we can find m_i^* of M^*

^{*&#}x27; Department of Mathematics, National Central University, Chung-Li, Taiwan.

such that $m_i^* \leq \varphi(m_i)$ for $i=1,2,\dots,n$. Take an element m^* of M^* such that $m^* \leq \prod_{i=1}^n m_i^*$. Then we have $\varphi(m^*) \leq \varphi(m_i)$ and $\varphi(m^*) \varphi(x) \leq \bigcup_{i=1}^n \varphi(m^*) \varphi(x_i) \leq \bigcup_{i=1}^n \varphi(m_i) \varphi(x_i) \leq a$ as desired.

Proposition 1.3. An element q of L is φ -primary if and only if, for any φ -system M, either q(M) = q or q(M) = e holds.

Proof. Suppose that q is φ -primary and there exists a φ -system M such that $q(M) \neq q$. Then we have $q \leq q(M)$. This implies that there exists x in $\Sigma(q(M))$ but not in $\Sigma(q)$. By (1.2), there exists an element m^* of M^* such that $\varphi(m^*)\varphi(x)$ is less than q. Because q is φ -primary and $x \leq q$, we have $m^* \leq r(q)$. This means M meets $\Sigma(r(q))$. By condition (β) , M meets $\Sigma(q)$. Then there exists m in M and in $\Sigma(q)$. It follows that $\bigcap_{q' \in \Sigma(q)} (q:q') = e$ (since q:q=e), then q:q'=e for all q' in $\Sigma(q)$. We have then q:m=e and then q(M)=e.

Conversely, suppose for any φ -system M, either q(M) = q or q(M) = e and q is not φ -primary. Then there exists $a \not \leq q$, $b \not \leq r(q)$ such that $\varphi(a)\varphi(b) \not = q$, $a,b \in \Sigma$. Since $b \not \leq r(q) = \inf_i p_i$, where p_i is φ -prime element and greater than q, there exists a φ -prime element p such that $p \ge q$ and $b \not \leq p$. Then $M = \Sigma'(p)$ is a φ -system. By the fact $q:b = \sup\{x | \varphi(x)\varphi(b) \not = q\}$ and $\varphi(a)\varphi(b) \not = q$, we have $a \not = q:b$. Moreover, we know that b is in M. Then $a \not = q:b \not = \bigcup_{m \in M} \{q:m\} = q(M)$. Therefore $q \not \leq q(M)$. Then we have q(M) = e. Since b is in $\Sigma(q(M))$, by (1.2), there exists an element m^* in M^* such that $\varphi(m^*)\varphi(b)$ is less than q. Now $\varphi(m^*)\varphi(b) \not = q \not = p$. We have $m^* \not = p$ or $b \not = p$. But both are impossible. Then q is φ -primary as desired.

If an element a has an φ -primary decomposition, then the isolated component of a can be expressed in terms of its φ -primary components.

Theorem 1.4. Let a be an element of L and M be an φ -system. Suppose that $a = q_1 \cap q_2 \cap \cdots \cap q_n$, where q_i is φ -primary. If $\Sigma(r(q_i))$ meets M for $n^* + 1 \leq i \leq n$ but not for $1 \leq i \leq n^*$, then we have $a(M) = q_1 \cap q_2 \cap \cdots \cap q_n^*$. If $\Sigma(r(q_i))$ meets M for $1 \leq i \leq n$, then a(M) = e.

Proof. If M is empty, the theorem is trivial. So, we assume that M is not empty. Let $x \leq a(M) = \sup_{m \in M} \{a : m\}$. As the proof of (1.3), we get $m^* \in M^* \subseteq M$ such that $\varphi(m^*)\varphi(x) \leq a = q_1 \cap q_2 \cap \cdots \cap q_n$, where M^* is the kernel of M. Then we have $\varphi(m^*)\varphi(x) \leq q_i$, $i=1,2,\cdots,n$. For $1 \leq i \leq n^*$, M does not meet $\Sigma(r(q_i))$. It means that $m^* \leq r(q_i)$ for all m^* in M^* . Since q_i is φ -primary, we have $x \leq q_i$, for $i=1,2,\cdots,n^*$ and hence $a(M) \leq q_1 \cap q_2 \cap \cdots \cap q_n^*$.

For $n^* + 1 \leq j \leq n$, $\Sigma(r(q_j))$ meets M and hence by (α) and (β) , $\Sigma(r(q_j))$ meets M^* . Since M^* is a μ -system, for $m_{n^*+1} \in \Sigma(q_{n^*+1}) \cap M^*$ and m_{n^*+2}

If for $1 \leq i \leq n$, $\Sigma(r(q_i))$ meets M, then the above proof shows that there exists m'_n such that $m'_n \in \Sigma(q_1) \cap \cdots \cap \Sigma(q_n) \cap M^*$ and then $(q_1 \cap \cdots \cap q_n) : m'_n = e$, hence we have a(M) = e. This completes the proof.

Combining this theorem with (1.3), we can conclude that if q is φ -primary element in L, then q(M) is e or q according as $\Sigma(r(q))$ meets or does not meet M, where M is a φ -system.

From (1.4), we see immediately the following corollary:

Corollary 1.5. A decomposable element of L has at most a finite number of isolated components.

2. Isolated set. Lemma 2.1. Suppose that an element a of L has an φ -primary decomposition: $a = q_1 \cap q_2 \cap \cdots \cap q_n$. Then any φ -prime element p which is greater than a must be greater than at least one of the q_i .

Proof. If p=e, the lemma is trivial. Therefore we may suppose there exists a φ -prime element $p\neq e$ such that $a \leq p$ and $q_i \leq p$ for $1 \leq i \leq n$. We can see that $\Sigma'(p)$ is a φ -system. Then we have $\Sigma'(p)$ meets $\Sigma(q_i)$ for all $i=1,2,\cdots,n$. It follows that $\Sigma'(p)$ meets $\Sigma(r(q_i))$ for all $i=1,2,\cdots,n$. If we let $\Sigma'(p)=M$, we have by (1.4), that a(M)=e. Let b be any element of L and let c be in $\Sigma(b)$. Then $c \leq e=a(M)=\sup_{m\in M}\{a:m\}=\sup_{m\in M}\{\sup[N_m]\} \leq \sup[\bigvee_{m\in M}N_m]$, where N_m is the set of the compact elements u's such that $\varphi(m)\varphi(u) \leq a$. As is seen from the proof of (1.3), we can find a finite number of elements x_i of $\bigvee_{m\in M}N_m$ (suppose x_i in N_{m_i}) such that $c \leq \bigcup_{i=1}^n x_i$ and there exists m^* in M^* (kernel of M) such that $\varphi(m^*) \leq \varphi(m_i)$. Then we have $\varphi(c) \leq \bigcup_{i=1}^n \varphi(x_i)$, and then $\varphi(m^*) \varphi(c) \leq \bigcup_{i=1}^n \varphi(m^*) \varphi(x_i) \leq \bigcup_{i=1}^n \varphi(m_i) \varphi(x_i) \leq a \leq p$. Since p is φ -prime and $m^* \leq p$, we have $c \leq p$ for all c in $\Sigma(b)$. This means that $\Sigma(b)$ is contained in $\Sigma(p)$, and then $b \leq p$, for all b in L, a contradiction.

As is easily seen from [3, Theorem 4.4] that if an element a of L has φ -primary decomposition, and let $a = q_1 \cap q_2 \cap \cdots \cap q_n$ be its normal decomposition, then the number of φ -primary components and the φ -radicals of φ -primary components depend only on a and not on the

particular normal decomposition considered. Then we have the following definition:

Definition 2.2. A subset $\{r(q_1), r(q_2), \dots, r(q_m)\}$ of the radicals is called an *isolated set* of a, if for $m+1 \leq j \leq n$, $r(q_j) \leq r(q_i)$ for $1 \leq i \leq m$.

Proposition 2.3. Suppose that an element a of L has an φ -primary decomposition. Let $a=q_1\cap q_2\cap \cdots \cap q_n$ be its normal decomposition, and let $r(q_i)=\bigcap_k p_{ik}$ be the expression of $r(q_i)$ as the meet of all the quasi-minimal φ -prime elements belonging to q_i . Then the following three conditions are equivalent:

- (1) The set $\{r(q_1), r(q_2), \dots, r(q_m)\}$ is an isolated set of a.
- (2) For each $q_i, 1 \leq i \leq m$, there exists at least one quasi-minimal φ -prime $p_{ik_i} = p_i^*$ such that $p_i^* \geq p_{jk}$ for all $j, m+1 \leq j \leq n$ for all k.
 - (3) For each $r(q_i)$, $1 \leq i \leq m$, $r(q_i) \geq q_{m+1} \cap q_{m+2} \cap \cdots \cap q_n$.

Proof. We shall prove this proposition by the way that (1) implies (2), (2) implies (3) and (3) implies (1).

Suppose that $\{r(q_1), r(q_2), \cdots, r(q_m)\}$ is an isolated set of a. We have $r(q_j) \not \leq r(q_i)$ for $1 \not \leq i \not \leq m, m+1 \not \leq j \not \leq n$ (by (2.2)). Assume that for every quasi-minimal φ -prime p_{ik} of $r(q_i), p_{jk} \not \leq p_{ik}$ for all $j, m+1 \not \leq j \not \leq n$ and for all k. This implies that $r(q_j) = \bigcap_k p_{jk} \not \leq \bigcap_k p_{ik} = r(q_i)$ for all $j, m+1 \not \leq j \not \leq n$. It leads to a contradiction. Then there exists $p_{ik} = p_i^*$ such that $p_i^* \not \geq p_{jk}$ for all $j, m+1 \not \leq j \not \leq n$ and for all k.

Secondly, we suppose that (2) is true. Since any φ -prime element greater than an element of L must be greater than a quasi-minimal φ -prime element belonging to it [2], we have by $p_{jk} \leq p_i^*$ that $q_j \leq p_i^*$ for $1 \leq i \leq m$ and for all $j, m+1 \leq j \leq n$. Therefore we conclude that $\bigcap_j q_j \leq p_i^*$ (because if not so, then we have $\bigcap_j q_j \leq p_i^*$, by (2.1), we have $q_j \leq p_i^*$ for some $j, m+1 \leq j \leq n$, a contradiction). Then $\bigcap_j q_j \leq r(q_i)$ for $1 \leq i \leq m$ and $j=m+1, \dots, n$.

Finally, we suppose $r(q_i) \geq q_{m+1} \cap q_{m+2} \cap \cdots \cap q_n$, for $1 \leq i \leq m$. It follows that $r(q_i) \geq q_j$, for all $j, m+1 \leq j \leq n$ and for $1 \leq i \leq m$. This implies that for all $i, 1 \leq i \leq m, r(q_i) \geq r(q_j), m+1 \leq j \leq n$. Then $\{r(q_1), r(q_2), \cdots, r(q_m)\}$ is an isolated set of a.

Now, we come to the second uniqueness theorem for normal decomposition [3]. The proof of this theorem is just similar to [1, Theorem 8]. So, we will omit it here.

Theorem 2.4. Suppose that an element a has φ -primary decomposition, and let $a = q_1 \cap q_2 \cap \cdots \cap q_n$ be its normal decomposition. If $\{r(q_1), r(q_2), \cdots, r(q_m)\}$ is an isolated set of a, then $q_1 \cap q_2 \cap \cdots \cap q_m$ depends only on $r(q_1), r(q_2), \cdots, r(q_m)$ and not on the particular normal decomposition of a.

Remark. By the second condition of (2.3), we have $p_{jk} \leq p_i^*$ for all $j, m+1 \leq j \leq n$ and for all k, where $p_i^* = p_{ik_i}$ and $1 \leq i \leq m$. Since any φ -prime element greater than an element of L must be greater than a quasi-minimal φ -prime element belonging to it, we have $q_j \leq p_i^*$ for $1 \leq i \leq m$ and for all $j=m+1, \cdots, n$. (1.4) shows that for $1 \leq i \leq m$, each a_{M_i} can be expressed as the meet of q_1, q_2, \cdots, q_m and one of which is certainly q_i (where $M_i = \Sigma'(p_i^*)$). Then we have

$$q_1 \cap q_2 \cap \cdots \cap q_m = q_{M_1} \cap q_{M_2} \cap \cdots \cap q_{M_m}$$
.

Since each minimal element of the set $\{r(q_1), r(q_2), \dots, r(q_n)\}$ forms on its own an isolated set of a, we have by (2.4) the following result which is analogous to that in [1].

Corollary 2.5. Let $r(q_0)$ be a minimal element in the set $\{r(q_1), r(q_2), \dots, r(q_n)\}$ of the radicals of the φ -primary components of a. Then the φ -primary component corresponding to $r(q_0)$ is the same for all normal decompositions of a.

References

- [1] Y. Kurata and S. Kurata: A generalization of prime ideals in rings. Proc. Japan Acad., 45, 75-78 (1969).
- [2] K. Murata and Derbiau F. Hsu: Generalized prime elements in a compactly generated l-semigroup. I. Proc. Japan Acad., 49, 134-139 (1973).
- [3] —: Generalized prime elements in a compactly generated *l*-semigroup. II. Proc. Japan Acad., **49**, 310-313 (1973).
- [4] K. Murata, Y. Kurata, and H. Marubayashi: A generalization of prime ideals in rings. Osaka J. Math., 6, 291-301 (1969).