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54. On the Freudenthal’s Construction of
Exceptional Lie Algebras

By Kiyosi YAMAGUTI® and Hiroshi ASANO**
(Comm. by Kenjiro SHODA, M. J. A., April 12, 1975)

Introduction. In his papers [3], [4], Professor Freudenthal con-
structed an exceptional simple Lie algebra ® as follows. Let  be an
exceptional simple Jordan algebra of all 8 X8 Hermitian matrices with
coefficients in the algebras of octaves, in which the Jordan product
X.Y is defined as 1/2(XY +YX). A symmetric cross product XxY
in J is defined by

XXY=X. Y——;—(Sp (X)Y +sp (V)X —sp (X) sp NI+ (X, VD),

where sp (X) means the spur of X, I is the unit matrix and (X,Y)
=sp (X-Y) for X,Yey. Furthermore, for any X,YeJ, <X,Y>isa
linear transformation of ¥ defined by

(X, Y>Z=2Y X (XXZ)—%(Z, Y)X—%(X, VZ forZeS.

Let © be the subspace spanned by {¢(X,Y)>|X,Y € g} in the space
of linear transformations on §. Let R=JBOIPRPR and L=HPORDY
@ (R is the field of real numbers) be direct sums as vector spaces, in
which elements are denoted as

P=[X,Y,¢ 0l and O0=I),<(X;, Y, p A, Bl

or
X 2ulXy, Y
Y
P= d o= e
an A
10) B

For any elements P;=lX,,Y;, &, w1 (i=1,2) in &, an alternating
form {P,, P,} and an element P, X P, of € are defined as follows;
{Pv P2}=(Xu Yz)—'(Xz, Y1)+$lw2_$2wl,
[ <X1’ Yz>+<X2, Y1> W
~ (X Y+ (X, Y) 3810, 86:0)

1
P, xP =3 _YIXY2+—%—(51X2+$2X1)

L X1><Xz—%(wlyz+wzy1)
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For 0=1},{X,,Y>,0,A,B1 in & and P=lX,Y,¢ 0l in &, an
element OP in K is defined by

(zi (X0, Y+ —;;,0>X+2B XY+ oA

OP=| — (T (Y0 Xip+ 10)Y +24 XX +¢B |.

(A’ Y) _PE
. (B, X) + pw
Then the following relations hold (cf. [2], [4])

(1) (PXQR-PXRQ+—{P,QR— P, R}Q—%{Q, R}P=0,

(2) {((PXQ)R, S}+{R, (Px@S}=0,
(3) [PXQ,EXSI=(PXQEXS+RERX(PxQ)S.

Put M={Pe R PxP=0} and let Inv (M) be a Lie algebra of the
group of projective transformations of & which leave the manifold I
invariant. Freudenthal introduced a Lie product [, ] in the vector
space direct sum & =Inv (IN)DUAPKDR, where U, was a three dimen-
sional simple Lie algebra, and he proved that & became a simple Lie
algebra of type E,.

Then the vector space £ =8P becomes a Lie triple system relative
to the ternary product [¢t.t.]1=I[t,t.], ;] (t; e I), since [RER, KERK]
CInv (MPY, [Inv (N)PY,, RKEKIC KPR and Inv (MDY, is a sub-
algebra of ®. Therefore it follows from the simplicity of & that < is
simple as Lie triple system (cf. [5], [6]).

In this paper, we shall give a direct proof of this result without
using of simplicity of & (see Theorem 1), and a reformation of the
Freudenthal’s construction by means of a kind of triple systems and a
criterion for simplicity of & (see Theorem 4).

§ 1. We denote an element of the vector space T=8DK in matrix

form as (5) for P,QeR. Following Freudenthal [3], a ternary
product in & is defined abstractly as follows:

[(3) () ()]

(P, X P;— P, X P)) P,— -;— {P,, P}}—{P,, P}}) P;+ ‘211—'{P1» P,}pP;

(4) = .
(P, X P;—P, X P)) P+ % (P, Pi}—{P,, P}) P;— —i—{P{, P3}p,

Then it is easily seen that ¥ has a structure of Lie triple system
relative to this product, that is, the following identities are satisfied
for any t,u,v, 2,y T ;

(5) [ttu] =0,
(6) [tuv] + [uvt] + [viu] =0,
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(7) [eyltuv]]=[[eytluv] 4 [tleyulv] + [bulzyv]].

A subspace @ is called an ideal of ¥ if [ESEXT]CS. And ¥ is said
to be simple if ¥ has no proper ideals and dim I >1.

Now we put P,=l0,0,1,01 and P,=(0,0,0,11.

Lemma 1. Let © be an ideal of the Lie triple system T=RDK,

then (ﬁ) € © is equivalent to (g) €.

prt. 1 (7)< v [()(9)(D)] - 2(2) 5 con

0 . P\(P,\( 0 1/P
. (3)e imois [N 2)]-3(5) o=
versely p € © implies o )Vo )\ p 740 €
Theorem 1. The Lie triple system T=R®OK with the ternary
product (4) is simple.

Proof. Let © be a non-zero ideal of ¥. If (1; 1)6@, then

I

[(5)(5)(3)] e for any Pesi, hence 2(T') e® and 5@ 0.

Using Lemma 1, we have {0}®8C &, hence R&RC S, which implies that
¥ is simple. So we shall show that (I; 1) €S. Let <P> be a non-zero

P/
clement in . Then, from @) we see [(0)(0)(7)]=7(7) <=

Hence we may assume without loss of generality that P=+0. Put

P=TX, Y, 8 0l
}(;1)] e &, hence _l_e(ﬂ) €.

oase 1. For ¢20: [[(5) () (p) 1 (5 o

Case 2. For w=+0: [(P)<O>(0)]= l (O)G@. From Lemma 1,
PJ\P,/\P, 2 \P,

it follows that <I(; 1) €.

Case 3. For é=w=0and X=0: Choose Z ¢ J such that (X, Z)+#0, then

[(?)(g)(g)]:}(X,Z)(I(I)e@, where Q=T0,Z,0,0],

hence (I(;l) €.

Case 4. Foré=w=0and Y+0: Choose Z € J such that (Y, Z)+0, then
a proof is similar to Case 3.

§ 2. We assume that any vector space considered in this section

is a finite dimensional vector space over a field F of characteristic 0. A

triple system U is a vector space with a trilinear map A XAXA—-A:

(z, ¥, 2)—[xyz]. A subspace B of U is called an ideal if [BAA]+ [ABA]

+[AAB]CB. We call a triple system U simple when it has only trivial
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ideals and dim 2 >1. A Lie triple system is a triple system satisfying
(5),(6), (7). We define a symplectic triple system & as a triple system
with a non-zero alternating bilinear form KX&—F: (z,y)—{x,y}
satisfying the following identities

(8) [xyz]=[yxz],
(9) [wyz] —[wzy] +{=, y}2—{, 2}y —2{y, 2z} =0,
(10) [eyluvw]] = [[eyulvw] + [ulzyviw] + [uv[zyw]].

A linear mapping D of & is called a derivation of & if D[xyz]
=[(Dx)yz]+[2(Dy)z] + [2y(Dz)]. The identity (10) implies that a linear
mapping L(z, y) : 2—[xyz] is a derivation of & Using (9) and (10), we
can prove that the bilinear form {, } is invariant under any derivation
of & Especially we have
1) {[wyzl, w}+{z, [xyw]}=0.

The vector space & considered in Introduction and § 1 becomes a
symplectic triple system by putting [P,P,P,]=(P, X P,)P;, and {P,, P,;}
=1/8{P,, P,} from (1) and (3). Another example is a vector space with
a non-zero alternating bilinear form {, } and the trilinear map (z, v, 2)
—[eyz]={z, 2}y + {y, z}x.

Remark. The symplectic triple systems are variations on the
Freudenthal triple systems (see [7]) or the balanced symplectic ternary
algebras (see [1]).

Lemma 2. Let R be an ideal of a symplectic triple system K.
Then

(i) |, K/,

(ii) Nit={re |{x, N}=0} s an ideal of &,

(iii) K+ s the maximal ideal of K.

Using this lemma, we have

Theorem 2. Let & be a symplectic triple system with an alter-
nating bilinear form {,}. Then & is simple if and only if the form
{, } is non-degenerate.

To construct a Lie triple system € from a symplectic triple system
!, put T=8PRK. We denote an element t=2®Py in matrix form as ¢

=( z> and define a triple product in T by

(12) [, tt,] = ([%%%] — @y, 5] — {2, Yo}as + {22, Y1}, + 2{2,, xz}ys)
(29,51 — (29,91 + {2, Yo3¥s — {225 Y1} —2{¥1, ¥} 2,

for ti=<§:) with z;, ¥; € &.

Then it is easily shown that € is a Lie triple system with respect
to this product. We call ¥ the Lie triple system associated with {.
By modification of the proofs of Lemma 1 and Theorem 1, we have the
following

Lemma 3. Let & be the Lie triple system associated with a sym-
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plectic triple system R. Then,

(1) of N is an ideal of K, then RDN is an ideal of T,

(i) if Sisanideal of T, then S=CGNR/DENK) and SNK isan
ideal of R.

Using this Lemma 3 and Theorem 2, we obtain a generalization
of Theorem 1 as follows.

Theorem 3. Let & be the Lie triple system associated with «
symplectic triple system K. Then T is simple if and only if K is simple.

For r,se &, a linear mapping L(r, s): t—[rst] on T is also a deri-
vation by (7). By (T, ) (resp. L(8, &), we denote the Lie algebra
generated by {L(r,s)|r,se X} (resp. {L(x,y)|x,y e &), of which ele-
ments are called inner derivations.

For any D ¢ _L(®, &), a linear mapping D of ¥ is defined by D L

Y
= (gf/)’ and three special linear mappings U, V, W are defined by

o(3)=(2,) 7G)=(@) w()=(2)
From (12), we have
L((;cl) (“ycz)) =L(@,, ¥) — L@y, y) — {2, Yo} — {2, »,PDU
1 ’ +2{xy, 2}V —2{y,, Yo} W.

a=a(5),(2)) () ()
weneo{(5)0)-+(5).)
sessar=s{(5) () w=-2((2), (1)

These identities mean that endomorphisms L(z, y), U, V, W are inner
derivations of ¥. Hence, we see that
L&, D)=LK, QVSFUDFVRFW.
The Lie products among these endomorphisms are
[L(z, y), L(u, v)]=L([zyul, v) + L(u, [xyv]),
[L(z, v), Ul=[L(z, y), V]=I[L(z, ), W]=0,
o, vi=2v, [U,Wl=-2w, [V,W]=U
Let ® be the standard enveloping Lie algebra of ¥ (cf. [5]), that
is, G=TDL(T, T)=KDKD_L(K, QYDFUDFVDFW. Then, we have
the following
Theorem 4. Let & be a symplectic triple system and & the stand-
ard enveloping Lie algebra of the Lie triple system associated with K.
Then & is simple if and only if & is simple.
Remark. The Lie algebra & considered in Introduction is isomor-

Conversely,
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phic to one obtained in this method from a symplectic triple system.
Furthermore, by Theorem 2 and Theorem 4, it is easily shown that & is
simple. Linear mappings >, L(%;, ¥,), U, V, W considered in §2 cor-
respond respectively to operators 0,1, 4,4 in the Freudenthal’s con-
struction (cf. [3]). In case that ¥ is the Jordan algebra of all 3x3
complex Hermitian matrices, the associated Lie triple system ¥ (see
Introduction) is 7, in the Lister’s classification of simple Lie triple
systems (cf. [5], 240-241).
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