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1o Introduction. In this paper we are concerned with nonlinear
evolution equations of a form

d---U--U +3tu(t)+A(t)u(t) f(t), O<_t<_T (1.1)

in a real Hilbert space H. Here for each fixed t, 3t is subdifferential
of a lower semicontinuous convex function t from H into (--c,

and A(t) is a monotone, single valued and hemicontinuous operator
which is perturbation in a sense. The effective domain of t defined
by {u e H" t(u) +}=D is independent of t. We denote the inner
product and the norm in H by (,) and respectively. Let T be a
positive constant.

We assume the following conditions or t and A(t).
A-(l). For every r 0 there exists a positive constant L(r) such

that
t(u)--S(u)]L(r) ]h(t)--h(s)] {t(u) + i}

hold if 0s, t T, u e D and I]u r, where h(t) is a continuous function
with bounded total variation.

A-(2). If u(t)e D is absolutely continuous on [a, b] (OabT)
then A(t)u(t) is strongly measurable on [a,b] and for any fixed
to e [a, b] A(to)u(t) is also strongly measurable on [a, b]. For any fixed
u e D, A(t)u is continuous on [0, T].

A-(). There are Riemann integrable functions W(t) on [0, T]
and a constant 0K 1/2 such that

[A(t)u[K ][3tu]]+ W(t) for any
A-(4). If u(t) is absolutely continuous and ]t(u)]+ [u(t)]r, then

A(t)u(t) W(t).
Under the above assumptions we consider the uniqueness and

existence of the solution of (1-1) where the solution is defined as
follows"

Definition 1.1. We say that u(t) is a solution of (1-1) if and only
if u(t)is continuous on [0, T] and absolutely continuous on (0, T] and
if (1-1) holds almost everywhere on [0, T].

Theorem 1.1. Suppose that the assumptions stated above are
satisfied. Then we hold the unique solution of (1-1) where f e L[0, T H]
and the initial date Uo e .
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Remark 1.1. The continuity assumption A-(l) is weaker than
those of J. Watanabe [3] and H. Attouch and A. Damlamian [1].

2. The outline of the proof. Using (a)>=C’ latl+D’ and A-(l),
we get the ollowing lemma.

Lemma 2.1. There exist constants C1 and C. which are independ-
ent of t and such that

t()

_
C +C for any e H.

We take a sequence {t} such that 0=t0t. t_ t T
and teI for any i=0,2, ...,n and ]t-t_]O as n for any
i= 1, 2, ., n. We denote by

(u)=t(u), A(t)=A(t), for tt<t+.
We consider the following evolution equations

dt +(+A(t))u(t) f(t) t t<t+
Un(ti)-- l(t) and u(0)=u0eD for i=0, 1,
(...n--1 and f(t) e L[0, T" HI. (2-1)

The solution of (2-1) is defined inductively by the solution of a operator
with constant coefficients. For the sake of simplicity we write u(t)
=u(t).

Using that (u(t)} are the solutions o (2-1) and Lemma 1 we get
the ollowing lemma.

Lemma 2,2, There is a constant independent of n and t such
that

lug(t) .
On the other hand since we get

(u)+1 d d u) a.e.t.

from H. Breis []. Sinee (t) is a srong solution of (2-1) we see

((t))+
g

dt<((t))+ C(IZ+N)g (-)

from our assumption A-(g) where and C are ositive constants
independent of , t and t. Combining (2-2) and A-(l) we see
((t.)) ((t)){1 +g(r) h(t_) h(t)]}

+ C(f() + W(t))d+ g(r)Ih(t_)-h(tOI. (-g)

We u
{I2 2C Ilfll g +2--__I w(t)gt+ L(r)V(h) + "()’ + 1}_K-

then from (2-) we see
((t)) <gKe (-)

where V(h)=tolal wriaion o on [0, T].
Combining (-8) and () we get the following lemma.
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Lemma 2-3. We know

where C3 is a constant independent of n and t.
From the above lemma we know. that there exists subsequence

(-tunj) which is L2-weakly convergent. For the sake of simplicity

we put u--ur Thus we see that u(t) is weak convergeace to u(t)
and u(t)is absolutely continuous on [0, T]. On the other hand since
u(t) is the solution of (2-1) we find: (v(s))ds- 2 (u(s))ds

>_: (f(s)-An(s)u(s)-s Un(S), v(s)--un(s))ds

Then

=> 2 (.f()--A()()- d-v(), v()-())/+ 1/. 11, +v(O)II.
Next we put v(t) =p(t) + (1-p)w(t) where w(t) D and is absolutely
continuous.
Thus we obtain the following" inequality

(4x(w(s))-- 4x(u(s)))ds

>_ (f(s)--A(s)u(s)- -u(s); w(s)--u(s))ds.
Next for any fixed e D and 0 <= t t<__ T we put

" t+gt<=t--(

|pu(t) +q t=pt+ q(t +)
u(t)" O<=t<=t,

(pu(t) + q t=pt+ (t--Dq
where p+q=l p>O, qO and eO.
If -0 we get

4xt()dt 4xt(u(t))dt> f(t)-A(t)u(t) u(t), --u(t) dt

d u(t), and u(t) weFor any Lebesque points of tu(t), f(t) A(t)u(t),-
know

( d u(t) --u(t))*(D--+*u(t)>= f(t)-A(t)u(t)- -d
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Considering that C=A(t) is monotone operator we can show the
uniqueness of (1-1). If u0 e D we can prove the theorem.

Next if u0e we put u,0=(l+l/m3)-u0 We denote by
u(t) the solution of (1-1) of initial data u,0. Since 3C+A(t) is
monotone operator we see that u(t) is uniformly convergent on [0, T]
then lim u(t)=u(t).

Using that u(t) are strong solutions of (1-1) and A-(3) we know
for any 0< < T,

I: (u(t))dt C
where C is a constant independent of and m. There exist 0 6
m 1, 2, such that

1 o (u(t))dt C, =C+(u()) .
We denote by v(t) the solution o (1-1) for the initial date v(O)
=u(O) e D on [6, T]. Then we find v(t)=u(t) on [, T] from the
uniqueness, of the solution of (1-1). On the other hand noting the
method of Lemma 2-3 we get

+ (v(t))lg C, or t e [ T]
where C is independent o n and m.
Thus we get

Using he above same mehod on [, T] we can prove he heorem.
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