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Introduction. In the present paper, we will study the relation
between infinite transitive primitive Lie algebra sheaves and their cor-
responding global Lie algebras. Our proof is done by using the clas-
gification theorem of infinite primitive pseudogroups [3]. In the last
section, we will calculate the cohomology groups of certain ideals of the
Hamiltonian Lie algebra with coefficients in the adjoint representation.

All the results we get in this paper are the extension of the
theorems proved by A. Avez, A. Diaz-Miranda and A. Lichnerowicz
[11.

1. Preliminaries. Let M be a connected smooth manifold and
X(M) the Lie algebra of all global smooth vector fields on M. Our main
objects are some Lie subalgebras of X(M).

It is well known that there are six classes of infinite transitive
primitive pseudogroups in the complex analytic case [3]. Now we
describe global smooth Lie algebras corresponding to them.

(1) the Lie algebra of all vector fields (i.e. ¥(M)),

(2) the Lie algebra of vector fields of divergence zero,

(8) the Lie algebra of vector fields of constant divergence,

(4) the Lie algebra of vector fields preserving a Hamiltonian
structure (the Hamiltonian Lie algebra),

(5) the Lie algebra of vector fields preserving a Hamiltonian
structure up to constant factors,

(6) the Lie algebra of vector fields preserving a contact structure
(the contact Lie algebra).

Let L(M) be one of the global Lie algebrag listed above. We denote
by _L the Lie algebra sheaf [5] corresponding to it. Let ., be a stalk
at pe M. Each L, has an infinite dimensional Lie algebra structure.
We define the linear mapping ¢, of L(M) to L, as follows. For any
X e L(M), ¢,(X) denotes a germ of X at p. Then ¢, is clearly a Lie
homomorphism. It is known that each ¢, is surjective. See for ex-
ample [4].

The formal algebra L of _[ is the Lie algebra consisting of formal
Taylor expansions of vector fields belonging to L. For the precise
definition, see [5]. Then we have a canonical Lie homomorphism
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F,: L,—L.

Since we are in a smooth case, F', is surjective. We will simply
denote by L the formal algebra of [, since [, is isomorphic to each
other for any point of M. Note that each L is an infinite transitive
primitive Lie algebra.

2. Results. Let K be a Lie subalgebra of X(M). If K contains
no non-trivial abelian ideals, K is said to be semi-simple. This defini-
tion is equivalent to that of F.H. Vasilescu [6].

It should be noted that the formal algebras of (1), (2), (4) and (6)
are simple Lie algebras, and the formal algebra of (3) (resp. (5)) con-
tains (2) (resp. (4)) as the ideal of codimension one.

Let J be an abelian ideal of L(M). Then using the facts stated
above, it can be concluded that F,o0¢,(J)=0 for any pe M, and we
clearly have J=0. If J is a finite dimensional ideal of L(M), we can
also have J=0 by means of the analogous method. Thus we have the
following.

Theorem 1. Let L(M) be one of the global Lie algebras listed in
1. Then L(M) is semi-simple. Furthermore, L(M) admits no non-
trivial finite dimensional ideals.

It is well known that a finite dimensional semi-simple Lie algebra
is decomposed into the direct sum of its simple ideals. But the follow-
ing theorem, which is also the extension of the result of [1], tells us
that each L(M) can not admit the decomposition stated above.

Theorem 2. Let M be a connected smooth manifold, and let L(M)
be one of semi-simple Lie algebras listed in 1. Then any non-trivial
ideal I of L(M) can not admit o non-trivial supplemental ideal in L(M).

Outline of Proof. Suppose that I admits a supplemental ideal J
in L(M). Let Z(I) be a centralizer of I in L(M), then we easily have the
decomposition: L(M)=I®J=I®PZ(I). We define the subset n(I) of M
as follows;

n)={peM; F,o¢p,(I)=0}.
Under these notations, we have
M—-nD={peM; F,0p,(Z(I))=0}.
Both #(I) and M—n(I) are clearly closed subsets of M. Since M is
connected, these facts immediately complete the proof.

3. Cohomology groups of the Hamiltonian Lie algebra and its
ideals. Let o be a symplectic form on M?**, that is, w is a closed 2-form
with o"%0. Then the conformal Hamiltonian Lie algebra, which we
denote by L.,,(M, ), consists of all vector fields X satisfying the equa-
tion L(X)w=K 0w, where K is a constant depending on X. Let N, be
a space of smooth functions on M, which have compact supports and
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satisfy IM Jo"=0. We denote by L, the Lie subalgebra of L,,,(M, »)

whose any element X satisfies «(X)o= —du (v € N)).

The Lie algebra L, is clearly an ideal of L,,,(M,w). Under these
notations above, we have the following.

Theorem 3. Let H(L,,L,) be the cohomology group of L, with
respect to the adjoint representation. Then it isisomorphic to L,(M,
w)/L,. If M is compact (in this case, w is non-exact), dim H(L,, L,) is
equal to the first Betti number of M, and hence it is finite dimensional.
If w is exact, H(L,, L,) is infinite dimensional.

Let L,,(M,w) be the Hamiltonian Lie algebra, then we can easily
generalize the result of Theorem 3, that is, we can calculate the coho-
mology group of some ideals of L,,,(M,w). We will resume it in

Theorem 4. Let A be an ideal of L.,,(M,w) such that L,(M, w)
DADL,. Then H'(A, A) is isomorphic to L,,(M,w)/A.

Remark. It should be noted that [L,, L,J=L,. This fact was
proved by E. Calabi [2], and it is very useful for the proofs of Theorem
3 and Theorem 4.
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