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1. Introduction. In this note we shall show some types of
manifold which admits an isometry invariant geodesic. Let M be a
Riemannian manifold and f be an isometry of M, then a geodesic a is
called f-invariant geodesic if fa--a. The problem of the existence of
isometry invariant geodesic is proposed by K. Grove ([1]) and in case
of connected, simply connected and compact manifold a criterion of this
problem is shown by him. We reform it into a calculable form ([3])
and here actually show some types of manifold which admits an inva-
riant geodesic. The existence of an invariant geodesic is known for
all compact connected, simply connected orientable manifolds of odd
dimension and for its orientation preserving isometry ([3]). And so
here we are concerned with even dimensional manifold.

Here the manifold M which we consider is ollowing
[H] compact, connected and orientable and its fundamental group

is finite.
An order of an isometry f is defined by the minimal integer n such

that f is homotopic to the identity and denoted by ord (f). And a
rank of the/-th homology group H(M, Z) over the integer group Z is
denoted by rank H(M, Z). Then our main results are following;

Theorem A. Let M be a 2k-dimensional manifold of [H] and f
be an orientation preserving isometry (/1). If rant H(M,Z)=2
and ord (f)0(mod 3), then there exists an f-invariant geodesic. If
rank H(M,Z)--3, ord (f)0 (mod2) and f has no eigenvalue 1, then
there exists an f-invariant geodesic.

Theorem B. Let M be a 2k-dimensional manifold of [H] and f
be an orientation preserving isometry (k 1). If rank H(M, Z)--even
and ord (f)--2, 4 or 8, then there exists an f-invariant geodesic.

For two dimensional manifold of [H] we can prove that there exists
an f-invariant geodesic for each orientation preserving isometry f by
using our result of [3].

2. Lemmas. Let M be a Riemannian manifold of 2k-dimension
and f be an isometry o M. Then a trace of an induced homomorphism
f:H(M, Z)--.H(M, Z) of k-th homology group which is defined by a

*) Dedicated to Professor Ryoji Shizuma on his 60-th birthday.



8 T. KUROGI [Vol. 52,

trace f" H(M, Z) Z)/torsion is denoted by 2(f) and
so the trace 2(f) is an integer. Sometimes we say an eigenvalue of f
instead of an eigenvalue of f.

Lemma 1. Let M be a 2k-dimensional manifold of [H] and f be
an orientation preserving isome$ry. If rank H(M, Z)=2r where r is
an integer, then there exist r-angles (t,8,O,...,t,) such that 2(f)
--2 (cos +cos O+cos 0+ +cos ) where 0=2t/ord (f) for some
t (l<i<r, t=0, __+1, +2,...). If rank H(M,Z)=2r+I where r is an
integer, then there exis$ r-angles (0,,0,...,) such that 2(f)
--2(cost+cosS+cost?+... +cost,)_+l where t,=2tz/ord (f) for
some t (l < i< r, t--0, ___1, _+2, ...). Moreover the angles are determined
uniquely for the homotopy class of f.

Proof. We have only to show this lemma in case of H(M)=I.
For in case of II(M):/= 1 we consider a compact covering space M of M
with H(/)=I because II(M) is finite. Let G(M) be a group of iso-
metries of M and Go(M) be a component of the identity, then it is
known that the order of G(M)/Go(M) is finite. And so there exists a
positive integer n such that f is homotopic to the identity. Since

f-- 1" H(M, Z)--.H(M, Z) where H(M, Z)=H(M, Z)/torsion, a= 1
for an eigenvalue a of the integral matrix f. Let a (1 <]<m) be the
eigenvalues of f where re=rank H(M,Z), then we have

+_1 because the determinant of f is +_ 1. Thus we hve
/ sin t where n=2t (t=0, _+1, +2, ...) and hence

(f)’--0"+0"2+0"3- +a--2 (COS 01+ COS 2+ COS 3+ "3f-COS 0r)
if m 2r and

ifm=2r+ 1. And the last half will be proved by using next lemma.
If two isometries f and g are homotopic and suppose that oral (f)

=p>q=ord (g), then we have fa homotopic to the identity. This is
impossible and so we conclude ord (f)=oral (g). Thus we have

Lemma 2. Let f and g be two isometries of a manifold of [HI.

If f is homotopic to g, then ord (f)=ord (g).
Hence for the homotopy class of f the angles (, ,, ..., 0)of

Lemma 1 are determined uniquely.
3. Proof of main results. In the previous paper ([8]) we have

the following theorem
Theorem C. Le M be a 2-dimensional manifold (k> 1)of [HI

and f be an orientation preserving isomery of M. Then there exists
an f-invarian geodesic if 2(f)=even.

If rank H(M, Z)=2, then 2(f)=2 cos 0 by Lemma 1. Since 2(f)
is an integer, (f)=0, +1 or +2 and so we have only to remove the
case of 2(f) + 1. If ord (f)0 (mod 3), 2(f) :/: + 1 because of
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t?--2t/ord(f) (t=0, +__1, _+2,...). I rank H(M, Z) 3, then 2(f)
=2 cos t?__ 1 by Lemma 1. If ord (f)0 (raod 2) and if f has no eigen-
value of 1, then (f)=0 or _+2 because ,(f) is an integer and
t=2tz/ord (f) (t=0, +__ 1, +__2, ...). And hence in both cases there exists
an f-invariant geodesic by Theorem C. These are the complete proof
of Theorem A.

Now we shall show theorem B. If rank H(M, Z)=2r, then (f)
2 (cos t+ cos t+ cos t+ + cos t) and a cos t+ sin t (1 i

r) is a solution of =1 where n=2, 4 or 8. Then cost=0, +1 or
+/-1/- (l<i<r) and hence 2(f)=even. Thus there exists an f-in-
variant geodesic by Theorem C. These complete the proof of Theorem
B.
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