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1. Introduction. In this paper we shall extend some well-
known results on the system of ordinary differential equations of Briot-
Bouquet type to the system o Paffian equations. By a system of
Pfaffian equations of Briot-Bouquet type we mean a completely in-
tegrable system o Paffian equations

fi(ul u xl, x)dui-- , ’" dx, i= l, m,
k=l

or

3u fi(u, x), i-- 1, ., m k= 1, ., n,( 1 ) x.
3x

where the f are functions holomorphic at the origin u=... =u
=x--...--xn=O and vanishing there. By the use of the usual multi-
index notation" a= (a, ., a), -- (, ., ), the Taylor expansions
of the f are expressible as

ax+ ,.
By denoting A the mtrix ormed by the coecients o ux, ..., u

in the developments o f ., f, let R, ., R be the eigenvalues of
A.

The complete integrability condition or (1) cn be written s
follows"

(2) 3f f 3f 3f-f+x --f’ + x= X = U X
2. Formal integration.

Theorem 2.1. Suppose that
(i) All the A, k--l,..., n, are similar to diagonal matrices;
(ii) For any system of non-negative integers (a, ., a, B), there

exists an index K, 1Kn, such that

afl+B, i=l, m.

Then there exists a formal transformation of the form
(3) u pv+ px+ pv"x
which transforms the system (1) into the system
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v v, i---- 1 m,(4) x x.
where P=(p)e GL(m, C) and ,..., are suitably renumbered [or
each k.

Suppose that there exists an index K, l<K<n,Theorem 2.2.
such that

[ afl+ B, i-- 1, ..., m,
for any system of non-negative integers (al, "., ,,, B) with the excep-
tion of the trivial m equalities" =.

Then there exists a formal transformation (3), which transforms
the system (1) into the system (4).

In order to prove Theorems 2.1 and 2.2, it is sufficient to prove the
following three lemmata:

Lemma 1. There exists an invertible linear transformation

u-- p,v,,

which takes (1) into a system

xk b x+x

i--1, ...,m,

(5)

Lemma 2. For a completely integrable system
u u+, a x , -.

one can find a unique transformation

u v+F, X,
which transforms (5) into a system

(6)

Lemma 3. completely integrable system of the form
u _u+ au"x, N_>2,

is transformed by a transformation and only one
(7) u v+
into a system

X I+l IN+I

Lemma 1 is an immediate consequence of the assumption (i) of
Theorem 2.1 or the assumption of Theorem 2.2 and the relations AAt
=AA which are deduced from (2). Lemma 2 is easily proved from
the assumption (ii) of Theorem 2.1 or the assumption of Theorem 2.2
and the relations
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(- +)a (- +)a
which are derived from the complete integrability condition for (5).
From the integrability condition for (6) we obtain

=i =I
The transformation (7) is invertible as

v=u- , p.ux +
whence

x - + p. u"x +....

Inserting (7) into the right-hand side,

(a. .)+ p. x +...x, v _v+ a.
rom which o]]ows Lemma 3 in virtue o (8).

3. Convergence of formal transformation.
Theorem 3.1. Suppose tha$ the assumptions (i), (ii) of Theorem

2.1 and $he following assumption are verified:
(iii) For each ,=1, ..., n, one finds, in he complex plane, a straight
line passing $hrough $he origin in such a way $ha$ $he eigenvalues
f, ..., 2 and uni$y lie in $he same side of $he line.

Then the formal transformation (3) does converge.
Theorem 3.2. The formal $ransforma$ion (3) converges under

$he assumption of Theorem 2.2 and $he following:
(iii)’ The eigenvalues 2, ., and I lie in $he same side of a straigh$
line in the complex plane passing through the origin.

There is no loss of generality in supposing that the system (1) is
the orm
( 9 ) x au, _fu= aux.
Then the ormal transformation (3) takes the o]lowing orm:
(10) u=v+
Substituting (10) into (9) and using (4), we obtain

where the P. are polynomials in p.,,, +J <a+]fl], whose
coefficients are linear forms in a....., + [ga[+]. We take a
convergent power series .+pA.u"x, which is a majorizing series

--," and setfor all ,, ,+ .
F(u, x)= A.u"x.

Next we choose a positive constant p so that we have
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for some K, l<_K<_n, and for any (, ) with 11+11>2. We see that
the system of equations in u,..., u

(u-v) F(u, x)
has a solution expressible by convergent series

u--v + P.v"x
and ha + Px is a majorizinff series of + _>vfor
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