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Let ¢ (z, 2) be a real or complex continuous function of a real
variable z in the interval (0,00), and of a real parameter 2 in a certain
interval, such that M{¢(x, 2) ¢ (x, #)} = 0 or 1, according as A == ¢ or
A =p, where ¢ denotes the conjugate complex function of ¢, and
M| f(z)} means after H. Bohr

lim 1 [ fw) d.
>~ T J,

We call the family of such functions the system of generalized
orthogonal functions. We restrict ourselves in the following to the real
function ¢(z, 4).

If f{z) be a real continuous function for z >0, for which M { fXz) }
exists and >0, and further if it can be uniformly approximated by
finite number of functions belonging to the system {¢(z, A)}, i.e. for any
€>0 there exist an integer N and two sequences of real numbers (a;, a.,
...... s aN); (/‘l; Moy ooney #N)) such that

N

|f(l‘)— Z ag#(z, () f <<e for all z > 0,
1

then Bohr’s theory of the almost periodic functions may be extended
to this case. For example, we can prove that for such a function f(z)
there corresponds an at most enumerable set of real numbers (4, 4, ---),
for which M{f(z) ¢(z, &)} = A,=+0, .while for any other values of 2,
M {f(x) ¢(x, )} = 0, and further that Z' Ay ¢(x, 4p) converges in means to

f(z), i.e.
. N
Jim 2§ fo) - 3 g, 0f=0,

o

or M { f’*’(x)} = Z A

1
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The aim of this note is to remark that some systems of generalized
orthogonal functions have a close relation to the singular integral
equations.

Let L(w) = %(p(x)%—)+q(x) u, where p(z), p'(x), ¢(x) are all con-
tinuous and p(x)>0 for >0, and consider the boundary value problem
for the differential equation of the second order L(u)+4iu =0, cor-
responding to the boundary condition of the following form :

(A). w(xr) and w(v) remain finite at both ends of the interval (0, oo),
i.e. for z>0 and 2>oo0.

If Green’s function G(z,§) of the differential equation L(u) = 0 sat-
isfying the boundary condition (A) exists, then it results G(§, )= G(y, €),
when it satisfies moreover the relation

p(x){ Gz, E) G, 7)— Gz, £) Gz, 77)} =0
for x>0, x>o00. If w(z) be the solution of the differential equation
L(w) 4+ ¢(x)=0, which is continuous with «'(z), u(z) for £>0 and satisfies
the condition

p){u@) @z, §)—uw'(r) G, 6} =0

for x>0, 2>o00, then we get

w) = fo "o®) Gz, &) dE.

Consequently, if wz) = ¢(z, 2) be the solution of I(u)+ Au = 0 satisfying
the above condition, then we arrive at the integral equation

@ o) =2 A "G, &) ¢(€, 1) dE.
In this case, however, the kernel G(z,§) is not regular, and the

integral ﬂ wgoz(x, 2) dz does not converge in general; and the charac-

teristic numbers 2 are not discrete, but may be continuous. These facts
were first remarked by Weyl and Picard.®”
We can however prove from the form L(u)+ Au = 0 the relation
Mio(z, Do, 1)} = 0 for A==pe.

If therefore M{¢¥(z,2)! exists and = ¢*>0, then we take ¢(z, ))/c as the
normalized characteristic function, and thus we see that the system of
the normalized characteristic functions of the singular integral e quation
(@) forms a system of generalized orthogonal functions.

(1) Weyl, Gottinger Dissertation, 1933 ; Math. Annalea, 65 (19))). Picard, Com ptes
Rendus, 1910; Ann. Ecole norm., ser. IIL 23 (1911). See also Hilb, Math. Annalen, 65
(1909).
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If the integral A “G(x,f) ¢z, A) dx converges uniformly, then we

can prove this fact directly from the integral equation (a), without
making use of the differential equation I(u)+iu = 0.

As an example we take I{u) = u’—u. This case was fully treated
by Weyl and Hilb. Green’s function and the characteristic functions
are respectively

Gz, &) = e tsinhz for z <§,
= ¢ *sinh § for 2§,
¢z, )= v2sin (vVI1-12); (i21)
or G@,8) = e¢*tcoshx forzx<§,

= ¢ %cosh§ for 28,

¢, 2) = 12cos(v/i=12. @=1).

1-4

2
As the second example we take L(u) = u”—-—4?n—~u, (n>1). Here

Green’s function is

=

Gz, &) = ‘/2;5— (_z_)" for z <&,

n ¢
= 1%(%)” for 2>,

and the characteristic functions are
. I —
o@, ) = vVr (VAin)2I(vViz), A=0).



