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Let (x, 2) be a real or complex continuous function of a real
variable x in the interval (0,re), and of a real parameter 2 in a certain
interval, such that M{(x, 2) -- (x,/) 0 or 1, according as 2. u or

2----/, where - denotes the conjugate complex function of ,, and
M{ f(x)} means after H. Bohr

lim ! /,,’r
We call the family of such functions the system of generalzed

orthogonal functions. We restrict ourselves in the following to the real
function (x, ).

Ill(x) be a real continuous function for x _> 0, for which M if(x)
exists and 0, and further if it can be uniformly approximated by
finite number of functions belonging to the system tp(x, 2)}, i.e. for any
e0 there exist an integer N and two sequences of real numbers (,al, a:,

av), (/1,/, ,/v), such that
N

If(x)-- 2’a?(z,/) <e for all x >=_ 0,

then Bohr’s theory of the almost periodic functions may be extended
to this case. For example, we can prov tha for such a function f(x)
there corresponds an at most enumerable set of real numbers (2, 2., ---),
for which M{f(z)(z, 2)} A=0, .whil for any other values oI" 1,
M {.f(z) (:c, i)} 0, and further tl’.at A (x, 2) converges in means to

f(x), i.e.

or

lim M If(z) l(x, 1)} =0,
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The aim of this note is to remark that some systems of generalized
orhogonal functions have a close relation to the singular integral
equations.

dLetu)= (x)
d

tiauous and )>0 for >0, and consider the boundary value problem
for the differential equation of the second order (u)+2u 0, cor-
responding to the boundary condition of the following form-

(A). x) and u(x} remain finite at both ends of he interal (0, ),
i.e. for x0 and.

If Green’s function z, $) of the differential equation L(u) 0 sat-
isfying the boundary condition (A) exists, then it results G(, )= G(y,
when it satisfies moreover the relation

pC) GC, G’/, )-G’(, $) x, ) 0

for x0, x. If () be the solution of the differential equation
)+(x)=0, which is continuous with u’(), u’() for >0 and satisfies
the condition

p(){:) :,, )-u’() Gx, ) 0

for x0, x, then we get

Consequently, if u(x) (, ),) be the solution of u)+),u 0 satisfying
the above condition, then we arrive at the integral equation

In ghis ease, however, ghe kernel , ) is no regular, and

ingegral f(,) d does hog converge in general; and ghe eharae-

erisgie numbers . are nog diserege, bug may be eonginuous. hese faegs

were firsg remarked by Weyl and Pieard.a

We can however prove from ghe form ()+ 0 ghe relagion

If(, .(, lt o for ..
If gherefore M{ f, )} eisgs and >0, ghen we gake f(, )/ as ghe

normalized characteristic function, and ghus we see he he system
ghe normalized eharaegerisgie fanegions of ghe singalar ingegral e quagion
() forms a sysgem of generalized orghogonal functions.

(1) Weyl, GSinger Dissertation, 19)3; Matlx. Aunalea, 6] ([9).)). Picarcl, Cam pies
Rendus, 1910; Ann. l’]zo!e norm., set. III, 2 ([911). See. alsa tIilb, Math. Annalen, 6
(1909).



304 M. FUJIWRA, M.I.A. [Vol. 2,

If the integral G(x, $) (r,, ,) dx converges uniformly, then we

can prove this fact directly from the integral equation (a), without
making use of the differential equation L(u)+ tu 0.

As an example we take L(u) u’---u. This case was fully treated
by Weyl and Hilb. Green’s function and the characteristic functions
are respectively

G(x, ) e- sinh for

e-sinh$ for

(x, ) /Y sin ("2-- 1 x) (1> 1)
or G(x,$)=e-coshx forx

e-cosh$ for

(z, i) v/2 cos (/2-1 x). (2 > 1).
1-4nAs the second example we take L(u) uI- u, (n>l). Here

Green’s function is

2n - for x<$,

4

2n
and the characteristic functions are


