No. 3.]

34. On a Property of Transcendental Integral Functions.

By Tatsujiro Shimizu.

Mathematical Institute, Tokyo Imperial University.

(Rec. Feb. 25, 1927 Comm. by T. TAKAGI, M. I. A., March 12, 1927.)

Mr. Tsuji¹⁾ proved that for a class of integral functions f(z), for which f(0) = a, $f(z_i) = b$, $(i = 1, 2, \cdots)$, where $a \neq b$, $a \neq 0, \neq 1$, and $b \neq 0, \neq 1$ and $|z_1| \leq |z_2| \leq \cdots \rightarrow \infty$, there exists an infinite number of concentric ring-regions $|z| < R_1$, $R_i < |z| < R_{i+1}$ $(i = 1, 2, \cdots)$, R_i depending only on the class, in which all the functions of the class take at least once the value 1 or 0.

We will here prove the following allied

Theorem: Consider a class of integral functions

$$f(z) = c_0 + c_1 z + c_2 z^2 + \dots + c_m z^m + \dots,$$
 (1)

for which $|c_m| \ge \frac{l_0}{m!} > 0$ for a certain value of $m \ge 1$, and $|f(z_i)| = l_i < M$

(i = 1,2,...), where l_i are positive constants²⁾ and $|z_1| \le |z_2| \le \cdots \to \infty$, then there exists an infinite number of concentric ring-regions $|z| < R_1$, $R_i < |z| < R_{i+1}$, (i = 1,2,...), R_i depending only on the class, in which any function (1) takes at least once the value 1 or 0, and we can find an expression for an infinite number of radii R_i of the ring-regions $R_i < |z| < R_{i+1}$.

Proof. Suppose, if possible, that a function (1) does not take the values 1 and 0 in the ring-region $0 \le R_0 < |z| < R$, $R = 2(r_i - R_i) + R_0$, where $|z_i| = r_i$, and therefore in the circle of radius $r_i - R_0$ with center at z_i , then by Landau's theorem³⁾ we have in $|z - z_i| < \frac{r_i - R_0}{2}$

$$|f(z)| < \Omega(M).$$
 (2)

Now take $2q\left(q < \left[\frac{2\pi}{1 - R_i/r_i}\right] + 1\right)$ circles $C_{i,\pm h} (h = 1,2,\cdots q)$ of radius

¹⁾ Proc. Imperial Academy, 2 (1926) 364-365.

²⁾ In this case it is not necessary that $c_m \neq l_i$.

³⁾ Götting. Nachr. (1910), 309.

 $\frac{r_i - R_i}{2}$ with centers on the circle $|z| = r_i$, so that they cover the whole

circumference $|z| = r_i$, the center of $C_{i,\pm h}$ lying within $C_{i,\pm (h-1)}$, then by successive application of Landau's inequality to the circles of radii $r_i - R_j$ about the same centers we have

$$|f(z)| < \mathcal{Q}^{(q)}.(M)^{1} \tag{3}$$

in the region covered by these circles $C_{i,\pm h}$. In this region and a fortior iin the circle $|z| \le r_i$ we have, as $q < [4\pi] + 1 = 13$, for $r_i > 2R_0$,

$$|f(z)| < \Omega^{(13)}(M)^2$$
. (4)

For all $r_i > 2R_0$ we have from (4)

$$|c_m| \le \max_{|z|=r_i} |f(z)| / r_i^m \le \mathcal{Q}^{(13)}(M) / r_i^m$$
 (5)

 $|c_m| \neq 0$ being given, for all r_i which satisfies the inequalities

$$r_i > 2R_0 \tag{6}$$

and

$$r_i^m > \frac{1}{|c_m|} \Omega^{(13)}(M),$$
 (7)

the function (1) must assume at least once the value 1 or 0 in the ring-region $R_0 < |z| < 2r_i - R_j$.

Hence for $R_1 = 0$ we obtain the circle $|z| < R_1 = 2r_{i_1}$, r_{i_1} satisfying (7), in which the function (1) takes the value 1 or 0. We can next take $R_2 = 2r_{i_2} - R_1$ as the outer radius of the ring-region $R_1 < |z| < R_2$, where

$$r_{i_2} > 2 R_1, \tag{8}$$

and consequently by (7), (8) $r_{i_2}^m > \frac{1}{|c_m|} Q^{(13)}(M)$. Preceeding in this way we have in general

$$r_{ip} > 2 R_{p-1}, R_p = 2 r_{ip} - R_{p-1}$$
 $(p \ge 1),$ $r_{i_1} > \sqrt[m]{\frac{1}{|c_m|} Q^{(13)}(M)}.$

where

From this theorem, which is not essentially different from Mr. Tsuji's, his theorem can be obtained as follows.

$$M^{4^{13}}D^{1+4+\dots+4^{12}}$$
.

¹⁾ $\Omega^{(q)}(M)$ denotes the q-th iteration of $\Omega(M)$.

²⁾ It follows from Landau's expression of $\Omega(M)$ that M^4D can be used for $\Omega(M)$, when M is larger than a fixed number, D being a numerical constant. By using it for $\Omega(M)$ the right-hand side of (4) becomes

c.f. Proc. Phy-Math. Soc. Japan, Ser (3), 8 (1926). 174.

Considering $|f(z_i)-f(0)|=\left|\int_0^{z_1}f'(z)dz\right|=|b-a|$ we must have at least one point η_f on the segment $(0\overline{z_1})$ at which $|f'(\eta_f)| \ge l_0 = \frac{|b-a|}{|z_1|}$ for all the functions (1). In order to apply the above theorem it is necessary to replace (5) by $|C_1| \le Q^{(q)}(M)/|z_i-\eta_f|$. And from $|\eta_f| \le |z_1|$ and $R_i-R_1>|z_1|$, we can obtain an infinite number of concentric ring-regions $R'_i < |z| < R'_{i+1}$, in which all the functions (1) take at least once the value 1 or 0 by taking $R'_{n+1} = R_{2+3n}$.

Similar method admits us to find an expression for an infinite number of radii of concentric ring-regions $R_i < |z| < R_{i+1}$, where all the functions of a class of integral functions f(z), for which $|f^{(m)}(z_0)| \ge l_0 > 0$ and $|f(z_i)| < |z_i|^p$, $(i = 1, 2, \dots)$, $|z_1| \le |z_2| \le \dots \to \infty$, p being a fixed constant, take at least once the value 1 or 0, provided that the integer $m > (4p)^{4^{8\pi}}$.

ERRATA

in my Note: On Some Properties of Meromorphic Functions. (Vol. 2 (1926) 466-469). Page 469, line 5 read " R_{n+1} " for " R_p ". Page 469, line 7, read "[] $^\rho$ " for "[]". Page 469, add "where $s=x_n, p=x_{n-1}$ " to the end.