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1. S. Bochner) proved the following theorems:
Theorem 1. If f() is bounded in (- oo, + o )and K() is absolutely

integrable in (-oo, + oo ), then we have

lim z +

Theorem . If (1) f() is absolutely integrable in (- oo, + o ),
(2) f() is eontinuous at =, (3) K(g) is absolutely integrable in
(- oo, + oo ), (4) K() is bounded in ( oo, + o ) and (5) K()= o(1 g 1-)
as g i--* o, then we have (1).

In this paper the following assoeiated heorem is proved:

Theorem 8. If (1) f() and f() are absolutely integrable
1+11 1+!1

in (-oo, +), (2 f() is continuous a g= and (o)K() and
K-() are absolutely integrable in (-00, + oo ), then we have (1).. We begin with some lemmas.

L,emm 1. If k() is absolutely integrable in (-oo, +oo ) and
h() tends eontinuously to a limi h(-o ) as -*-o, then we have

i.m- ( v) sin( r) -d=h(- ()
(-)

boundedly for any in (-, + ), being a fixed eonstant.
Proof. Without loss of generality, we may suppose that h(- )= 0.

(,-)

( . ,).

_+ (). sinZa(e--v)
a($-- v)

=d+& my.

1) S. Bochner: Fouriersche Integral, 1933. Cf. T. Takahashi and S. Izumi Science
Reports, Tohoku Univ., 1934.
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For any positive number , there is an A such that

for <A, and then
e IA sin2(-’--,) dI’fll 2 2(#__)2

sin2 d_
2 2

As h() is abluly integrable, there is an integer to, such that

< 2($--r)z 2
for r0. Hence

for to. Thus we get (2).
Lemma .

we put
If K*($) is squarely integrable in (-, +o0 ) and

then we have

lira K*(r) K() Id 0. (8)

Proof.) Let k*() and k() be the Fourier transform of
and K(), respectively. Then we have

k:()=(1-)k*() ]2;

By the Planeherers threm

_
K*() K() ]"d _k*($)

which tends to zero as i . Thus the lemma is prove.
3.) We will now prove Threm 3. Instd of (1), it is sufficient

to prove that

lim x + )d=f(x K()d (4)
n 0 0

1) We can prove this lemma in more elementary manner as Lemma 67 in
Wiener’s work" Fourier Integral and Certain of its Applications.

2) Cf. S. Bochner" Berliner Sitzber., 1933.
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And we may suppose that f(z)=0. Further, by Theorem 1, we may
suppose that f() is identically zero in the neighbourhood of z. If we
put e’, n e" and

then (4) becomes

If we put K*(}--K(e)e’, then (5) becomes

We have

the inversion of the order of integrals being permissible by the absolute
convergence of the repeated integral. By Lemma 1,

im -)()-0.

On the other hand,

whieh tends to zero as 2 , by mma 2. Thus (6) and then the
threm is prove.


