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43. A Problem Concerning the Second Fundamental

Theorem of Lie.

By Koésaku YOSIDA.
Mathematical Institute, Faculty of Science, Osaka Imperial University.
(Comm. by T. YOSIE, M.LA.,, May 12, 1937.)

§1. The problem and the theorem.

Let R denote the set of all the matrices of a fixed degree, say =,
with complex numbers as coefficients. We introduce a topology in R
by the absolute value

al=y S at,  A=]al.

If @, a subset of non-singular matrices ¢ R, is a group with respect
to the matrix-multiplication, it is a topological group by the distance
|A—B|.

The topological group & is called a Lie group, if there exist a

finite number, say m, of elements X;, X,, ...... , Xm € R which satisfy
the conditions :
1. X, X ... , X.» are linearly independent with real coefficients.

2). exp (ﬁi t.X,)e®, t real?

3). There exists a positive e such that any element 4 € @ may be
represented uniquely in the form

A=exp (5';; t.X,), ¢ real,

if | A—E| < e (E the unit-matrix of R).

By a theorem of J. von Neumann® & is a Lie group if and only
if it is locally compact. Here, for convention, a discrete group is also
called a Lie group. If @ is a Lie group, the set & of all the elements

EtX,, t real, satisfies:

" (@. & is a real linear space which has a finite base with real
coefficients, viz, Xj, Xy, ------ , X

®. [X Y]= XY—YXG,\)‘ with X, Ye$.

& is called the Lie ring of the Lie group &, the two ring-opera-
tions being the vector-addition and the commutator-multiplication [X, Y.
It is the set of all the differential quotients of & at E® The differ-

ential quotient of & at E is defined by lim ((A-—E)/e,-) where
A(>E)e® and real ¢ (%0) are such that hmA =F, hm &=0.

2-»0

1) exp (X)= Z‘, (X”/n .

2) See K. Yosnda Jap. J. of Math. 13 (1936), p. 7. Neumann’s original statement
(M. Z. 30 (1929), p. 3) reads as follows:

® is a Lie group if © is closed in the group of all the non-singular matrices e R.

3) Cf. K. Yosida: loc. cit.
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Conversely let 3 denote a subset of R which satisfies («) and (B).
Then, by the second fundamental theorem of Lie, the set & of all the
elements of the form

exp (flltiXi),trealandﬁ:It,-l<e, e>0,

constitutes a Lie group-germ. That is, if X, Ye® are sufficiently
near £, X' and YX also e®. & is called the Lie ring of the Lie
group-germ G.

Then the set & of all the products of a finite number of elements
e€® and of the limit matrices of such products, so long as they are
non-singular, forms a locally compact group. Hence §5 is a Lie group.
Let & be the Lie ring of this Lie group @, then $ 2 3. However,
& does not necessarily coincide with J, as the following example
shows us:

-1 0 |
0 w/—1

Hence the Lie group-germ & is mot mecessarily a wvicinity of the
identity of the topological group &.

Thus it may be of some interest to obtain the conditions by which
& coincides with & As an answer to this problem, I intend to prove
the following

Theorem. The Lie group-germ ®& is a vicinity of the identity of
the Lie group ®, if the ring X is irreducible.

Here  is called irreducible if the group @ is irreducible, that is,
if all the matrices of & are not simultaneously similar to the matrices
of the form

|
|
I

, 7/2rm irrational.

the base of §=“ v

A

| 0|
' * B

!
|
§2. The proof of the theorem.

Lemma 1. ® is a Lie invariant subgroup-germ of &, viz.
BAB1'e@ for any Be® if Ae@ is sufficiently near E.

Proof. let A=exp(X), XeJ. Then BAB'=exp(BXB™) and
BXB™ tends to 0 as X tends to 0. Thus it is sufficient to prove

*) BXB'el with XelJ, if Be@.

(*) is evident in the special case Be®, for then the trans-
formation X—BXB™! is induced by the so-called linear adjoint Lie
group-germ of ®. The general case Be & may be obtained from this
special case, by limiting process.

Lemma 2 (due to E. CartanV). The vicinity of the identity of
the irreducible Lie group & is a direct product of a semi-simple Lie

1) E. Cartan: Ann. Ec. Norm. Sup. (3) 26 (1909), p. 148. For the proof see H.
Freudenthal: Ann. of Math. 37, 1 (1936), p. 63. In the course of the proof of our
theorem, ®; (i=1, 2) will be proved to be not only Lie group-germ but also a vicinity
of the identity of the Lie group.
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group-germ &, and an abelian Lie group-germ &, where det. (4)=1
for any Ae®, and the matrices of &, are all of the form aF, « de-
noting complex numbers.

As a special case of this Lemma we have

Lemma 2. @ is a semi-simple Lie group if § is irreducible and

(**) trace (X)=0 for Xe$.

Proof. For then the matrices of & and hence of & are all of
determinant 1.?

The above condition (**) is surely satisfied if the Lie ring & is
semi-simple. For a semi-simple Lie ring & coincides with its com-
mutator-ring,? that is, any element of & may be obtained as the
commutator-product [X, Y], where X and Ye 3.

_ Proof of the theorem. By Lemma 1 the sub-ring & is an ideal in
$, viz. [X, Y]e for Xe &, Ye&. We will prove that this ideal J
is a direct summand of the Lie ring .

By Lemma 2 the Lie ring & is a direct sum of the semi-simple
Lie ring &, of the Lie group-germ &, and the abelian Lie ring X, of
the Lie group-germ &, Thus &; is commutative with S, :[X, Y]=0
for Xe$y, Yelo

The semi-simple Lie ring &, is a direct sum of simple and semi-
simple ideals, by a theorem of E. Cartan Hence any ideal of 3 is
semi-simple. As @, consists of the matrices of the form «F, the base
of the abelian Lie ring 3, is either

i). aE, where a denotes a real or complex number (=0 if J,=0),
or

ii). E and v/ —1E.

Thus, in any case, & is a direct sum of simple ideals. Hence the
ideal § is a direct summand of & We next prove that 32 &..

Let =3+ be a direct decomposition of §. Then, as J and
¥ are ideals in §, § is commutative with & :

(***) [X, Y]=0 for Xe§, YeQ.

Hence, if & does not contain J;, there must exist a semi-simple ideal
$! < Iy, commutative with § by (***). Thus the matrices € & of the
form exp (X), X e i, are permutable with every matrix of the irre-
ducible group-germ G. Hence, by Schur’s Lemma, exp (X) (XeS) and
consequently every matrix € i must be of the form «E. i is thus
an abelian Lie ring and hence is not semi-simple. This is a contradic-
tion, and so we must have § = 3.

The same reasoning shows that, if f} is irreducible and semi-
simple, we must have §=&. For, then & is semi-simple by Lemma
2’. Hence, in the above Lemma 2, &, and &; are not only Lie group-
germ but also the vicinities of the identities of Lie groups.

Next we will prove that I = &,. There are two cases.

1) det. (exp (X))=exp (trace (X)).
2) See, for example, H. Freudenthal: loc. cit.
3) E. Cartan: Théses (1894), p. 63.
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Case 1. Base of Sp=aFE(a=0 if J;=0).
Assume that 33 0 and =31 Then the group-germ & is a vicinity

of the identity of the Lie group @&; whose Lie ring are 5;=S5. Thus
$,=0, contrary to the hypothesis. This proves I 2 J,.

Case 2. Base of J,=FE and v/ —1E.

If both E and /' —1E do not belong to §, we obtain =0 as above,
contrary to the hypothesis J.3 0. Next let either one of E and
v/ —1E, E for example, belong to §. Then, as E is permutable with
every matrix, any matrix ¢ ® must be of the form

A; e the intersection (G-@®,),

Y=exp (tE), t real,

or the limit matrix of ’_such matrices. Thus, by Lemma 2, det. (X)=
exp (?), t real, for X e ®, and hence X is not of the form exp (s-v'—1E),
s real. Then 1/ —1F does not belong to the Lie ring §. This is a

contradiction, and so we must have § 2 J..
Thus, in any case, 3=§.

A, ...... AY, where{

Q. E. D.



