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1. The problem and the theorem.

Let 3t denote the set of all the matrices of a fixed degree, say n,
with complex numbers as coefficients. We introduce a topology in 3t
by the absolute value

If @, a subset of non-singular matriees e 9t, is a group with respect
to the matrix-multiplication, it is a topological group by the distanee

The topologieal group @ is called a Lie group, if there exist a
finite number, say m, of elements Xx, Xz, X e R which satisfy
the eonditions

1). X, Xz, X are linearly independent with real coefficients.

2). exp (Y, X) e @, * real.D

3). There exists a positive, such that any element A e 3 may be
represented uniquely in the form

A =exp (] tX), t real,

iliA-E]<= e (E the unit-matrix of ).
By a theorem of J. von Neumannz) ( is a Lie group if and only

if it is loeally eompaet. Here, for eonvention, a discrete group is also
ealled a Lie group. If @ is a Lie group, the set of all the elements
] X, real, satisfies"
i-1

(a). is a real linear space which has a finite base with real
eoeffieients, viz, Xx, X., X.

(). IX, Y] XY- YXe with X, Ye .
is called the Lie ring of the Lie group @, the two ring-opera-

tions being the vector-addition and the eommufator-multiplieaion IX, Y].
It is the set of all the differential quotients of @ at E3’ The differ-

of * at E is defined by lim ((A,-E)/,), whereential quotient

A(:E) e 3 and real , (0) are sueh that limA,=E, lim ,=0.

1) exp (X): Y] (Xn/n !).

2) See K. Yosida: Jap. J. of Math. 13 (1936), p. 7. Neumann’s original statement
(M. Z. 30 (1929), p. 3) reads as follows:

( is a Lie group if is closed in the group of all the non-singular matrices e .
3) CL K. Yosida: loc. cit.
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Conversely let denote a subset of 9 which satisfie (a) and (/).
Then, by the second fundamental theorem of Lie, the set f of all the
elements of the form

exp (] tiX), t real and ] t] < e, e :> 0,
i-I i-i

constitutes a Le grou-ger. That is, if Y a scient]y
nr E,X- and YXal e. is ca]l the Lie ring 0 the Lie
gup-germ .

Then the t of all the pruc of a fini numr of elements
e and of the limit matrices of such pruc, long they are
non-singular, forms a llly compact oup. Hence is a Lie oup.
t the Lie ring of this Lie oup , then . However,
d not nerily coincide with ,, the following emple

shows us"

-1 0
the be of r]2= iation.

Here the Lie grip-germ not csarily a vinity of
ntity of the topological group .

Thus it may of me interest obin the conditions by which
coincid with . As an answer this problem, I intend prove

the following
Theem. The Lie group-germ a vicinity of t identity of

the L group , if the ring iedib.
Here is called irredible if the oup is iucible, that is,

if all the matrices of are not simulnusly simil the matric
of the form

A 0
* B

2. The proof of the theorem.

Lemma 1. is a Lie invariant subgroup-germ of (, viz.
BAB-e for any B e if A e is sufficiently near E.

Proof. Let A exp (X), X e . Then BAB- exp (BXB-) and
BXB- tends to 0 as X tends to 0. Thus it is sufficient to prove

BXB- e with Xe , if B e (.

(*) is evident in the special case B e (, for then the trans-
formation X--BXB- is induced by the so-called linear adjoint Lie
group-germ of (. The general case B e may be obtained from this
special case, by limiting process.

Lemma (due to E. Cartan). The vicinity of the identity of
the irreducible Lie group ( is a direct product of a semi-simple Lie

1) E. Cartan" Ann. Ec. Norm. Sup. (3) 26 (1909), p. 148. For the proof see H.
Freudenthal" Ann. of Math. 37, 1 (1936), p. 63. In the course of the proof of our
theorem, $i (i--1, 2) will be proved to be not only Lie group-germ but also a vicinity
of the identity of the Lie group.
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group-germ )1 and an abelian Lie group-germ , where det. (A)--1
for any A ( and the matrices of ( are all of the form aE, a de-
noting complex numbers.

As a special case of this Lemma we have
Lemm . ( is a semi-simple Lie group if is irreducible and

(**) trace (X)--0 for X ..
Proof. For then the matrices of ( and hence of ( are all of

determinant 1.)

The above condition (**) is surely satisfied if the Lie ring is
semi-simple. For a semi-simple Lie ring coincides with its com-
mutator-ring,2) that is, any element of may be obtained as the
commutator-product IX, Y], where X and Ye

Proof of the theorem. By Lemma I the sub-ring is an ideal in, viz. [X, Y] e for Xe , Ye . We will prove that this ideal
is a direct summand of the Lie ring .

By Lemma 2 the Lie ring is a direct sum of the semi-simple
Lie ring of the Lie group-germ ( and the abelian Lie ring 2 of
the Lie group-germ )2. Thus is commutative with .’[X, Y]=0
for Xe , Ye.

The semi-simple Lie ring is a direct sum of simple and semi-
simple ideals, by a theorem of E. Cartan.3) Hence any ideal of , is
semi-simple. As f consists of the matrices of the form aE, the base
of the abelian Lie ring .2 is either

i). aE, where a denotes a real or complex number (a=0 if 2--0),
or

ii). E and ,/-1E.
Thus, in any case, is a direct sum of simple ideals. Hence the

ideal is a direct summand of . We next prove that c1.
Let ---!-’ be a direct decomposition of . Then, as and

’ are ideals in , is commutative with ’"(***) [X, Y]=0 for Xe , Ye ’.
Hence, if does not contain ,, there must exist a semi-simple ideal-,, commutative with by (***). Thus the matrices e ( of the
form exp (X), X e, are permutable with every matrix of the irre-
ducible group-germ . Hence, by Schur’s Lemma, exp (X) (Xe)and
consequently every matrix e must be of the form aE. is thus
an abelian Lie ring and hence is not semi-simple. This is a contradic-
tion, and so we-must have ,.

The same reaching shows that, if is irreducible and semi-
simple, we must have =. For, then is semi-simple by Lemma
2". Hence, in the above Lemma 2, and are not only Lie group-
germ bu also the vicinities of the identities of Lie groups.

Next we will prove that 2. There are two cases.

1) det. (exp (X))--exp (trace (X)).
2) See, for example, H. Freudenthal" loc. cit.
3) E. Cartan: Th&s (1894), p. 53.
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Case 1. Base of 2=aE(a=O if ..--0).
Assume that =V 0 and =. Then the group-germ is a vicinity
of the identity of the Lie group ( whose Lie ring are =. Thus
=0, contrary to the hypothesis. This proves .

Case . Base of .=E and /- 1E.

If both E and /-1E do not belong to , we obtain .=0 as above,
contrary to the hypothesis :V 0. Next let either one of E and
/- 1E, E for example, belong to . Then, as E is permutable with
every matrix, any matrix e must be of the form

[A e the intersection (.),
AIA AY, where[Y=exp (rE), real,

or the limit matrix of such matrices. Thus, by Lemma 2, det. (X)=
exp (t), t real, for Xe (, and hence X is not of the form exp (s-/- 1E),
s real. Then /-1E does not belong to the Lie ring . This is a
contradiction, and so we must have ,

Thus, in any case, =.
Q.E.D.


