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116. An Abstract Integral, IlL

By Shin-ichi IZUMI and Masahiko NAKAMURA.
Mathematical Institute, Tohoku Imperial University, Sendal

(Comrm by M. FUJIWARA, M.I.A., Dec. 12, 1940.)

The object of this paper is to make the integration theory free
from the concept of function.

1. Let ]L be a system of elements , 5, c, ..., , y, z, and let a,, )-, be real numbers and k, n, , be integers. We suppose that
L satisfies the following axioms.

Axiom 1. L is an abelian group with real number, field as opera-
tor domain. Group operation is denoted by "/ ".

Aom is partially ordered, that is, the relation "" is de-
fined and

(2.1) a a,
(2.2) ab and bc imply ac.
Axiom 3. L is a lattice, that is, for every a and every b in. L,

there exist the join a b and the meet a c b such that
(3.1) aab, bawb, and ac, bc imply abc,
(3.2) aacb, bab, andad, bd imply abd.
Axiom 3’. L is a "restricted" a-lattice, that is, for any

"bounded ")sequence (x.}, there exist the elements V x. and / x
n-I n-I

such that
(3’.1) V x (m= 1, 2, ...) and < c’ (n= 1, 2, ...) imply

V x. <c’

(3’.2) / x, (m= 1, 2, ...) and x, d’ (n= 1, 2, ...) imply

Axiom .. Between partially ordering and group operation there
hold the relations-

(4.1) a => 0 implies -a <= 0,
(4.2) a :> b implies, a+c :> b+ c,
(4.3) a:>0 and a:>0 imply aaO.
We need further some definitions.
Definition 1. + O, x- x 0 and x x+ x-.
Definition . lira x.=/ (V x), lira x.= V (/ x), provided that

{x} is bounded. If they coincide, then we denote it by lim x.
2. We will now define the abstract Riemann and Lebesgue inte-

gral of element of L. We will begin by the

1) Let ’ L. If there are u and in L such that < s u for all s in S, then
S is called bounded.
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Definition 3. If S is a subset of L and for every a and every b
in S aa-b belongs to S, then S is called linear.

Definition . If S is linear and is a functional such that x 0
implies x 0, then is called positive. If (aa/b) a(a)-b(b),
then is called linear.

Definition 5. f=fx is called an (abstract) Riemann integral and
R=R the class of Riemann integrable elements, provided that

[5.1] R (L and R is linear,
[5.2] f is a functional defined for all elements in R and non-

negative and linear.
[5.3] e R implies le R,
[5.4] if {}R, lim=0 and there is a yeR such that

x Y (n= 1; 2, ...), theh limf(x)=0.

Definition 6. F=F is called an (abstract)Lebesgue integral and
L=L is the class of lebesgue integrable (or shortly L-integrable) ele-
ments provided that

[6.1] L L and L is linear,
[6.2] F is a functional defined for all elements in L and non-

negative and linear,
[6.3] zeL implies zl e L,
[6.4] if z eL, zF=O and YlZ, then yF=O,
[6.5] if {z} L, limz=z, and there exists a y eL such that

z Y (n 1, 2,...) then z e L and lim zF=zF,

[6.6] if {z} L, z z+ (n= 1, 2, ...), lim z=z and lim zF is

finite, then z e L and lim zF=zF.
3. From the definitions above stated we can prove
Theorem 12). If f is a Riemann integral and R is the class of R-

integrable elements, then there are Lebesgue integral F and the class
of L-integrable elements L such that

{1.1} R L,
{1.2} f=F for all x in R.
Proof. We define L’ as the set of z Such that there are .sequences

{x} and {y} in R such as

Then L’ R. By zF we mean the greatest lower bound of lim xf
where {x} R, lira x z and there is a y in R such that x y

(n=l, 2, ...). We put zF=-(-z)F. Let L be the set of z such that

zF=zF and zF is defined by the common value. F and L thus de-
find, satisfy the required conditions and axioms.

1) This definition is essentially due to Daniell and Banach.
2) This theorem is essentially due to Daniell and Banach.
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4. Let us now introduce the notion of product of elements. For
this purpose we replace Axiom 1 by the following axiom"

,4o . is a commutative ring with real number field as
operator domain. Ring operations are denoted by "+ " and ". ".

Axiom 4 is added by
(4.4) 0 and 5 0 imply 5 0,
(4.5) If unit element 1 exist, then 1 0.
In such a lattice , we define the second Riemann integral and

the class of R-integrable elements . such that the conditions [5.1]-
[5.4] hold good and further

[5.YJ unit 1 belongs to . and 1--1D.
[5.3] e. and y e imply ye.
The second Lebesgue integral F. and .the class of L-integrable

functions L. is defined such that conditions [6.1-6.6 hold good.
Then we have
Tcorem . If fi is the second Riemann integral and . is the

class of -integrable elem.ents, then there are Lebesgue integral F and
the class of L-integrable elements L such that

(2.1)
(2.2) --F for all in ,
(2.3) and eL imply e L.
Proof. Let L" be the set of such that there are sequences ()

and (y) in such as

lira liray

for all x in R.. We have L" R..
We define (x, z)F,. as the greatest lower bound of lim (xx,)f where

{x,} <R, limx,z and there is a y in R such that x,:>y (n=l,

2, ...). We put (x, z)F,= -(x, -z)F,. If (x, z)F, and (x, z)F,. are finite

and equal for all x in R, then we denote it by (xz)F, and the set of
all z for which (xz)F. is defined, by L..

It is easy to verify that F. and L, are the required ones.. We will consider the third Riemann integral f and R such
that f and R satisfy the conditions [5.1], [5.1’], [5.2], [5.3], [5.3’],
[5.4] and

[5.5] R contains a complete orthogonal system {x}, that is, (1)
{x} is a normalized orthogonal system, i.e.

[ 0 for i-j,

1 for

and (2) {x,) is complete in L that is, (xz)F=O (i=1, 2, ...) imply
z--()o

For a z in L., we put

1) This axiom is used only in 6.
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a (xz)F. (i= 1, 2,...)

which is called Fourier coefficients of z. Thus we get the formal series

ax alXl -{-a.-]- -- a,x-t-..-which is called Fourier series of z. This is a representation of z in
L,., so that we write

z ]a.
-1

6. We will define the fourth Riemann integral f and R which
are fa and Ra satisfying the condition"

[5.3"] if x eR and y e R, then xy eR and (xy)f (xx)Z(yy)f.
By F and L, L7), we mean the Lebesgue integral and class of

L-integrable elements, its subspace which satisfy [6.1]-[6.6J, and
[7.1] L)g L,
[7.2] for every w and every z in L), there exists (zw)F, and

((zw)F,) (zz)F,. (ww)F,.

Theorem 3. If f is the fourth Riemann integral and R is the
class of R-integrable elements, then there are Lebesgue integral F and
the class of L-integrable elements L and its subspace L() such that

R, <___LT) L,.
(3.2} xf=xF for all x in R,
{3.3} for every z in R and w in L(), there exists (wz)F and

((zw)r,) <= (zz)F,

Proof. We define L by the set of w, z, such that for every w
and every z in L there exists {x}, (y}, (x.}, {} in R such that

lim x z lim ., lira y w -limy
and

where zw need not belong to L. By (w, z)F2 we denote the greatest
lower bound of lim(x,y,)f such that {x} and {y.} belong to R,

lira xy wz, lim x. w, lim y. z and there are x’ and y’ such that

’, y y’ (n-- 1, 2, ...). We put (w,z)F-- -(-w, z)F-- -(w, -z)F.
Let L) be the set of z such that (w,z)’=(w, x)F for all w in Li),
and the common value is denoted by (wz)F. And L be the set of z
such that (w,x)F=(w, z)F for all ao in R, and (lw)F is denoted by

wF, which is called the Lebesgue integral of z in L. Thus defined
L, L) and F satisfy the required conditions.

Since L) is contained in L, we can define the Fourier series of
Z in L)
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By the assumption of L and additivity of F, we get
N /V

((z-, a=) (z- a,x))F=(z.z)F--, a
,-1 ,-1 n-1

By 0F=0 and [7.2] (putting w=0), the left hand side is 0.
get the Bessel’s inequality

(zz)F ,a
,--1

Thus we

7. In order to prove the Riesz-Fischer theorem we will further
introduce the assumption"

[6.6’] if (z.} L, 0 z. z+ and lim (z)F <: co, then them
exists lim z..

This assumption includes that if {z.} L and J (! z-z,_ I)F <Y. o,

then there exists the element /z.=lim z.
-1 ,-)

We need a lemma:
Lemma. If {z.} L], then lim ((z-z) (z-z)}F=O implies

the existence of z in L), such that lim {(z-z) (z-z)}F 0.

Proof. Necessity of the condition is easy by the Minkowski’s in-
equality, which is evident by [7.2]. For the proof of sufficiency, we
put

=max {(z-z) (z-z)}F.

Since &-0, there exists an increasing sequence n such that .
converges. Therefore

(Iz,+-z,l)F, (k=l, 2, ...).

By [6.6’], there exists z=lim

We have also {(z-z.) (z-z.)}F for all n :> m, and then
[6.6’] gives us

{(z-z) (z-z)}Fa (m= 1, 2, ...)

which is the required.
We can now prove the Riesz-Fischer theorem"

Theorem 4. If , a <2 co, then there exists an elements z in L(-),
such that {a} are Fourier coefficients of z and

(zz)F=, a lim {(z-s) (z-s,)}F=O
il n->oo

where s ax+... +a,x,.

Proof. We have {(s-s) (s-s)}F a
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which tends to zero as n, --, o. Lemma gives the existence of z in
L such that

lim {(s-z) (s-z)}F=0.

And we have

where

a, (x,s,)F (x,z)F-t- (x,(s,, z))F

Therefore {a} are the Fourier coefficients of z.
On the other hand

By [6.6], we have

(zz)F, <= ,Z,..
Combining this with the Bessel inequality, we get the identity

(zz)F, a


