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116. An Abstract Integral, III.

By Shin-ichi IzuM1 and Masahiko NAKAMURA.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.LA., Dec. 12, 1940.)

The object of this paper is to make the integration theory free
from the concept of function.

1. Let L be a system of elements a,b,¢, ..., 2, ¥, 2, -.- and let aq,
B, 7, --- be real numbers and %k, m,n, ... be integers. We suppose that
L satisfies the following axioms.

Axiom 1. L is an abelian group with real number field as opera-
tor domain. Group operation is denoted by “ + ”.

Axiom 2. L is partially ordered, that is, the relation “ <7 is de-
fined and

21) aZa,

(22) a<band b<c imply a <c.

Axiom 3. L is a lattice, that is, for every a and every b in L,
there exist the join a b and the meet @ N b such that

31) a<aub b<aub and a<ec b=<c imply aUb<e¢,

B2 az=anb b=anb, and a =d, b=d imply a nb=d.

Axiom 8. L is a “restricted” os-lattice, that is, for any

“bounded ™ sequence {xz,}, there exist the elements {21 2, and ).Slac,.
such that
(38.1) z.< Vo, (m=1,2..) and z,=¢ (n=1,2,..) imply

Ve, ¢,

n=1

3.2 zn= /.Slx,. (m=1,2,...) and x,=d (rn=1,2,...) imply
7\ Ln Z d.

n=1

Axiom 4. Between partially ordering and group operation there
hold the relations:

(4.1) a>0 implies —a <0,

(4.2) a>b implies a+c¢>b+c,

(4.8) a>0 and a>0 imply aa>0.

We need further some definitions.

Definition 1. xt=200, s =20 and |z|=2"—2x".

Definition 2. limz,= A\ (V 2), limz,=V (A .), provided that

n->c0 n=1 m=n n>o n=1 m=n

{x,} is bounded. If they coincide, then we denote it by .lir»g Lo

2. We will now define the abstract Riemann and Lebesgue inte-
gral of element of .. We will begin by the

1) Let S<L. If there are u and ! in L such that lgég_u for all 8 in S, then
S is called bounded.
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Definition 3. If S is a subset of L and for every a and every b
in S aa+pb belongs to S, then S is called linear.

Definition 4. If S is linear and «y is a functional such that =0
implies ¢ = 0, then ¢ is called positive. If (aa+pgb)p=alay)-+pB(by),
then ¢ is called linear.

Definition 5V, f=f is called an (abstract) Riemann integral and
R=R, the class of Riemann integrable elements, provided that

[.1]] R< L and R is linear,

[6.2] f is a functional defined for all elements in R and non-
negative and linear.

[6.3] xzeR implies |z |e R,

[6.4] if {x.} <R, ,lgg 2,=0 and there is a yeR such that

|2 Sy (n=1,2, ...), theh lim f(x,) =0.

Definition 6°. F=F, is called an (abstract) Lebesgue integral and
L=L, is the class of lebesgue integrable (or shortly L-integrable) ele-
ments provided that

[6.1] L<L and L is linear,

[6.2] F is a functional defined for all elements in L and non-
negative and linear,

[6.8]1 zeL implies |z|e L,

[6.4] if zeL, zF=0 and |y| <z, then yF'=0,

[6.5] if {z,} <L, limz,=z and there exists a yeL such that
|2a| Ly (8=1,2,...) then ze L and 1&z,,F=zF,

[6.6] if {z.} <L, z,Zz,.1 (n=1,2,...), li»rg Z.=2 and li»rgzwlv" is
finite, then ze L, and lig 2, '=2zF

3. From the definitions above stated we can prove

Theorem 1”. If f is a Riemann integral and R is the class of R-
integrable elements, then there are Lebesgue integral F' and the class
of L-integrable elements L such that

{11} R<S L,

{1.2} xf=2F for all z in R.

Proof. We define L’ as the set of z such that there are sequences
{=,} and {y,} in R such as

limz,=>2>1limy,.
n>o n->oo

Then L' 2 R. By zF we mean the greatest lower bound of llglo Znf
where {x,} <R, limz,>2 and there is a y in R such that z,=>y
(n=1,2,...). Wen;;t 2F= —(—2)F. Let L be the set of z such that
zF=2F and 2F is defined by the common value. F and L thus de-
find, satisfy the required conditions and axioms.

1) This definition is essentially due to Daniell and Banach.
2) This theorem is essentially due to Daniell and Banach.
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4. Let us now introduce the notion of product of elements. For
this purpose we replace Axiom 1 by the following axiom :

Axiom 1. L is a commutative ring with real number field as
operator domain. Ring operations are denoted by “+ ” and “.”.

Axiom 4 is added by

(44) a>0 and 5>0 imply adb>0,

(4.5) If unit element 1 exist, then 1>0.

In such a lattice L, we define the second Riemann integral f; and
the class of R-integrable elements R, such that the conditions [5.1]-
[5.4] hold good and further

[6.1'] unit 1 belongs to R, and 1f,=1".

[6.3] zeR; and ye R, imply aye R;.

The second Lebesgue integral F, and .the class of L-integrable
functions L, is defined such that conditions [6.1]-[6.6] hold good.

Then we have

Theorem 2. If f; is the second Riemann integral and R, is the
class of R-integrable elements, then there are Lebesgue integral F, and
the class of L-integrable elements L, such that

{2°1} RZ g L2’

{2.2} axfy=uF; for all x in R,

{2.3'} xeR; and ze L, imply xze Ly,

Proof. Let L” be the set of z such that there are sequences {x,}
and {y.} in R such as

lim a2, = 22 > 11m LY

n—)vo

for all  in R, We have L 2 R..
We define (z, 2)F; as the greatest lower bound of hm (xx,) f where

{z.} <R, hm 2, =2 and there is a y in R such that o=y (n=1,

2, ...). We put (x, 2)Fo= — (2, —2)F,. If (=, 2)F; and (zx, 2)F;, are finite
and equal for all # in R, then we denote it by (xz)F, and the set of
all z for which (x2)F; is defined, by L.

It is easy to verify that F, and L, are the required ones.

5. We will consider the third Riemann integral f; and R; such
that f; and R; satisfy the conditions [5.1], [5.17], [5.2], [5.8], [5.8'],
[5.4] and

[6.5] R contains a complete orthogonal system {x,}, that is, (1°)
{x.} is a normalized orthogonal system, i.e.

0 for iy,

(“*'””")f'”F{ 1 for i=j,

and (2°) {x,} is complete in L, that is, (x;z)F>,=0 (¢=1,2,...) imply
z2=0.
For a z in L, we put

1) This axiom is used only in §6.
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a;=@2)F: (=12, ...)
which is called Fourier coefficients of z. Thus we get the formal series
A0, =X+ Ayt -+ Ap2pt

which is called Fourier series of z. This is a representation of 2z in
Ly, so that we write

(-}
z~Jlax;.
=1

6. We will define the fourth Riemann integral f; and B, which
are f; and R satisfying the condition :

[6.87] if xeR, and yeR,, then xye R, and (xy)fi < (2x) fi(yy) fa

By F, and L,, L?, we mean the Lebesgue integral and class of
L-integrable elements, its subspace which satisfy [6.1]-[6.6], and

[11] LP S L,

[7.2] for every w and every z in L{, there exists (zw)F; and

(@w)FY)* < (2)Fy- (ww)F.

Theorem 3. If f, is the fourth Riemann integral and R, is the
class of R-integrable elements, then there are Lebesgue integral F; and
the class of L-integrable elements L, and its subspace L such that

{81} R SLP< L,

{38.2} afi=xF, for all  in R,

{8.8} for every z in R, and w in L{, there exists (wz)F; and

((0)F)’ < ) Fyww)F .

Proof. We define L by the set of w, z,... such that for every w
and every z in L there exists {«xL}, {#i}, {22}, {#2} in R such that

llmw}.2z>hmw§., 11my},>w>hmy3,

ny o n>o

and

lim okyl, > 2w > hm Tnln »

n>0

where zw need not belong to L;. By (w,2)F; we denote the greatest
lower bound of lim (x.y.)f such that {z,} and {y.} belong to R,

‘n-)oo

llm lim %.y, = wz, hm T =W, hm Yn =% and there are 2’ and ¥’ such that

x,,,Zx,y,,zy’ n=1,2,. ) We put (w, 2)F'= — (—w, 2)F'= — (w, —2)F.
Let LY be the set of z such that (w,2)F=(w, z)F for all w in L,
and the common value is denoted by (wz)F. And L, be the set of z
such that (w,x)F=(w, 2)F for all w in R, and (Iw)F' is denoted by

wFy, which is called the Lebesgue integral of z in L, Thus defined
L, L? and F, satisfy the required conditions.

Since L is contained in L,, We can define the Fourier series of
z in LY
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zZ~ ila,,w,, .
By the assumption of L and additivity of F,, we get
N N N
(=23 anita) (=23 anit)) Fe= (- 2)Fi— 3 0.
By 0F'=0 and [7.2] (putting w=0), the left hand side is = 0. Thus we
get the Bessel’s inequality
)F = ﬁlai .
7. In order to prove the Riesz-Fischer theorem we will further
introduce the assumption :

[6.67] if {z.} <L, 0=<2,=<2,1 and lim (z,)F;<< 0, then there
exists lim z,.

This assumption includes that if {z,} <L, and i}l (|2n— 201 ) Fy<< oo,

then there exists the element {7 Z,=lim z,.
n=- n->00

We need a lemma:
Lemma. If {z,} <L then li”tr_l) {(Zm—24) (2m—2,)}Fy=0 implies

the existence of z in L, such that ]i_)tg {(zn—2) (2,—2)} F=0.

Proof. Necessity of the condition is easy by the Minkowski’s in-
equality, which is evident by [7.2]. For the proof of sufficiency, we
put

3i=ma§. {(zm_zn) (zm_zn)} Fd .
Since 6;— 0, there exists an increasing sequence m; such that kﬁi&,,k
converges. Therefore

('znk+1—znk|)F'4§3nk (k=1, 2; "') .

By [6.6'], there exists z=}g2 Zne
We have also {(zn—2s,) (2n—2,,)}Fs < 0, for all m; > m, and then
[6.6°] gives us
{@m—22) Gm—2)}F4<0m (m=1,2,...)

which is the required.
We can now prove the Riesz-Fischer theorem :

Theorem 4. 1f ila3,< co, then there exists an elements z in L,
such that {a;} are Fourier coefficients of z and

(zz)F4=i az, li+m {(z—s,) (2—s)}Fy=0,
where s,=at;+ -+ a,2,.

Proof. We have {(8m—5n) (Sm—38)} Fy= f‘.la%

1=n+
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which tends to zero as m, n— «. Lemma gives the existence of z in
LY such that

lim {(s,—2) (s,—2)}F4,=0.
And we have

;= @) Fy=(z2)Fot (wi(s.—2)) Fi,
where

(2082 —2)) Fy < ((8n—2) (s —2) ) Fs—0.

Therefore {a;} are the Fourier coefficients of z.
On the other hand

”’0 pos
(snk—snk)ﬂ=z a’% é 2 a’% .
=1 =1
By [6.6], we have
(z)F, < §_{ a.
Combining this with the Bessel inequality, we get the identity

(z2)Fy= ii az.



