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110. On the Semi-ordered Ring and its Application
to the Spectral Theorem.

By Kosaku YosipA and Tadasi NAKAYAMA.
Mathematical Institute, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.LA., Nov. 12, 1942.)

This note deals with some remarks about semi-ordered rings and
their application to the spectral theorem. Semi-ordered rings have been
treated jointly by Messrs. I. Vernikoff, S. Krein and A. Tovbin®. We
first observe that for their result the assumption of the associative law
of multiplication is unnecessary ; it follows, as the commutativity, from
the other axioms, and this fact will be of use in applications. Further,
their theorems may be obtained rather easily also from Clifford-
Lorenzen’s theorem concerning sémi-ordered abelian groups® by con-
sidering operator-domains. As for application, we prove a spectral
theorem in the semi-ordered rings without appealing to the spectral
theorem in vector lattice but relying upon Baire’s category theorem.
We thus obtain a new approach to the spectral theorem for bounded
self-adjoint operators in a Hilbert space.

1. Elementary observations about semi-ordered abelian groups.
Let G be a semi-ordered abelian group, that is, an abelian group which
possesses a semi-order % =y (equivalent to x—uy = 0) such that

(i) if =0 and y=0 then z+y=0,
@) if =0 and —x=>0 then 2=0.
We assume a further condition :
(iii) if ne=0 for a certain natural number n, then x=>0.
Let moreover G possess an Archimedean unit e:
(iv) { for any x there exists a natural number n=mn(x) such that

—ne < ne.

And we call the totality N of those elements x in G satisfying
—e<tr e (for every t=1,2,...) the radical of G. N is a normal
subgroup® of G, and the factor group G/N is also a semi-ordered
group.

In virtue of the condition (iii) G is, according to Clifford-Lorenzen’s

1) Sur les anneaux semi-ordonnés, C.R. URSS, 30 (1941). Cf. also H. Nakano
Teilweise geordnete Algebra, Jap. J. Math., 17 (1941).

2) A.H. Clifford: Partially ordered abelian groups, Ann. of Math., 41 (1940).
P. Lorenzen: Abstracte Begriindung der multiplikativen Idealtheorie, Math, Zeitschr.,
45 (1939).

8) Here we call a subgroup of G normal when it is a kernel of an order-homo-
morphism of G. Thus a subgroup H is normal if and only if xeH, 0<y<wx
implies ye H.
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theorem®, order-isomorphically embedded in a direct sum of linearly
ordered groups:

GE Gty Goaxw<r(ny,,...) (@,eGy);

here the order relation in the direct sum is explained, as usual, com-
ponent-wise, and without losing generality we may suppose that when
2 runs over G its component z, exhausts G,. The image (component)
e, of e is, for each #, an Archimedean unit of G,, and we denote the
radical of G, by N,. Evidently an element x belongs to N when and
only when x, belongs to N, for every o. Thus the group G/N is
embedded isomorphically in the direct sum G,=G,/N,:

2 mod. N <> (..., z, mod. N, ...).

The order relation is preserved in the direction “—>". Further, each
G,=G,/N, is, as an Archimedean linearly ordered group, a subgroup
of the ordered group of real numbers, and the kernel M, of the homo-
morphism G — G, is a maximal normal subgroup of G. If, in parti-
cular, N consists of 0 only, that is, if the condition :

) if —e<tr<e (t=1,2,...) then x=0,

is satisfied, then G itself is mapped isomorphi_cal’ly mto the direct sum
of the Archimedean linearly ordered groups G, order being preserved
in the direct direction “—7"". TFurthermore, if the stronger condition :

(vi) if tx<e (t=1,2,...) then 2<0,

is fulfilled, the order relation is preserved in the both directions *“—”
and “<7”, that is, G 1s order-isomorphically embedded in the direct
sum of G,. For, if x, <0, mod. N, then x, <2, for a certain element
2z, in N, whence tx, <tz, <e, for every natural number {. When
this is the case for every o, the assumption in (vi) is fulfilled and we
have © < 0. Now, suppose that G possesses a domain of operators
02={A}, which is by itself a semi-ordered abelian group, satisfying
the axioms (i), (ii) and such that

(vii) if 2=0 (in G, A=0 (in 2) then Ax =0 (in G),

4) See 2). As the proof suggested by Clifford shows, we may take as G, linearly
ordered groups which are (not order-but) group-isomorphic with G. Namely: consider
subsets P in G which satisfy the conditions: i) if >0 then weP, ii) if weP, yeP
then a+yeP, iii) 0&P, iv) if maueP (m>0) then xe P. When P is such a subset
(for instance, the set of all the positive elements of G), we can re-order G by calling
the elements of P positive; denote the semi-ordered abelian group thus obtained by
G(P). Further, if there is an element © in G such that neither x nor —wis contained
in P, then there exists a second P which contains P and x both. We may, for
example, take the set §(z; kz=mp+nw, k>0, mz0, n =20, m+n> 0) for a new P.

z
From this follows that if P is a maximal such subset then G(P) is linearly ordered.
Moreover any non-zero and non-negative element is contained in at least one maximal
such subset P, whence positive in G(P). Thus G is order-isomorphically embedded in
the direct sum of G(P)’s, P running over all the maximal such subsets in G, by letting
« correspond for each P to w itself in G(P).
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(viii) (A+B)x=Ax+ Bz, A(x+y)=Ax+ Ay.

Let moreover

(ix) { £ possess an Archimedean unit I which satisfies Ix=ux
for every ze¢G.

Then we have the Lemma : Every normal subgroup of G is allowable
with respect to 2. Proof: Let H be a normal subgroup in G, and
let xe H, Ae 2. Thereis anatural number % such that —nlI < A< nl
whence —nlrx < Ax <nlr. Thus —nx < Ax <nx and Ax belongs to
H too, In particular the maximal normal subgroups M, are 2-allow-
able, and the above isomorphisms are operator-isomorphisms with respect
to L.

2. Semi-ordered rings. Let R be a ring with a unit element e
and real multipliers. Neither the commutativity nor the associativity
of the multiplication is assumed. Let in R be defined a semi-order
such that

(I) if =0 and y=0 than 2+y=0 and xy=0,
(II) if 2=0 and —x=0 then xz=0,
(II) if =0 and «(real number) >0 then «x=>0.

Further we assume that the ring unit e is an Archimedean unit:

for any x there is a positive number «=u(x) such

V) {

Then R satisfies, considered as an abelian group possessing R itself as
an (either left or right) operator domain, the conditions (i)-(iv), (vii)-
(ix) of the preceding section. And, every residue class mod. an M=M,
is represented by a multiple «e. Hence, we have, expressing the con-
dition (v), (vi) in a modified fashion,

Theorem 1. Let R satisfy, besides the above conditions,

V) if - lte<w<1e (t=1,2,...) then z=0.
Then R s ring-tsomorphic to a certain ring R(IN) of (real-valued
bounded functions over a certain space M={M} : x<>x(M), such that
e 1s represented by 1: e(M)=1. In particular, R is both associative
and commutative. The order is preserved in the direction x-— x(M),
when we order R(M) in the usual manner.

Theorem 2. If R satisfies the stronger condition :

(VI)® in(i):‘ 1 e exists and 18 equal to 0,
I

then the order ts preserved in the both directions, so that R s ring-
order-isomorphic to R(MN).

5) Whence tor every x in R an order-limit }:): exists and =-0.
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Here, according to our construction, I is a certain set of maximal
normal® ideals of R, but not necessarily all of them. However, the
theorems are still the more true if I represents the totality of the
maximal normal ideals of R. So, assume this be the case. Then M
is a bicompact Hausdorff space by the so-called weak topology, under
which the functions in R are continuous. Furthermore, since 1 is con-
tained in R(M) and since there exists for any two distinet points
M, M’ in I an element x in R such that a(M)xx(M’), the ring
R(M) is dense in the ring of all the continuous functions on I with
respect to the metric defined by the greatest absolute value taken by
a function as its norm” Hence

Theorem 8. Let R satisfy besides (I)-(VI) the condition :

(VII) R s a Banach space by the norm |z|=inf (—ae <2 < ae).

Then R s ring-order-isomorphic to the ring R(ON) of all the continuous
Sfunctions over a bicompact Huasdorff space M. In particular, R is a
vector lattice, viz. lattice-ordered abeliom group with real multipliers.

Remark. Let, conversely, R be a vector lattice which satisfies (I)'—
(VII):

1)) if =0 and y=0 then z+y=>0.

Such a vector lattice R is called, by S. Kakutani®, an abstract (M)
space. We may, following after F. Riesz and Y. Kawada®, define a
multiplication xzy in R by

4oy = (c+y)— (x—y), w2=§g%) (24]x| —2%), w=sup (z,0)—inf (z,0).

It is easy to see that R now satisfies the axioms (I)~(VIII). In this
way, the equivalence of the semi-ordered ring and the abstract (M)
space may be proved appealing meither to the spectral theorem of H.
Freudenthal® nor to the representation theorem' of the abstract (M)
space.

Another method of reducing the above theorems of our semi-
ordered rings to the known results is, in case the condition (vi) is
satisfied, to complete by cuts and apply the representation theory of
vector lattices and lattice-ordered rings®. When we have only the

6) Defined similarly as in 3). “Fundamental” in the sense of Vernikoff-Krein-~
Tovbin, loc. cit.

7) See H. Nakano: #ffZifit, ring Xt vector lattice, 4BI#t HIAE, 218
(1941).

8) Weak topology, bicompact set and the principle of duality, Proc. 16 (1940).
See also the literatures referred to in K. Yosida: On the representation of the vector
lattice, Proc., 18 (1942).

9) F. Riesz: Sur la théorie ergodique des espaces abstraits, Acta Szeged, 10
(1941), 1. ,Y. Kawada: #ig M-z2ff %3 =7, 2@ EWSEHREE, 227 (1941).

10) Teilweise geordnete Moduln, Proc. Amsterdam Acad., 39 (1936).

11) See 8).

12) B. Vulich: Une définition du produit dans les espaces semiordonnés linéaires,
C.R. URSS,, 26 (1940). H. Nakano: loc. cit. in 1). T. Ogasawara: Ring lattice
ANER K RIS, ZEREBERTT, 230 (1942).
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condition (v), then we have first to re-order the ring by Vernikoft-
Krein-Tovbin’s procedure so as to have (vi).

3. An abstract spectral theorem. Let R be a semi-ordered ring,
again neither associativity nor commutativity being assumed, satisfying
the conditions (I)-(IV), (VII) and, furthermore,

(VIID { for any increasing sequence {x,} bounded from above
<< - <vy), supx,=order-limit x, exists in R.

Then we have the

Theorem 4. There exists, for any x e R, a resolution of the identity
{e,} with the properties :

(1) d=e,<e.=¢ if 14,
(2) if Al A, then order-limat e; =e;,

(8) e;=e for A=zl and e;=0 for A<<—l|zl,
2l
@) { for ang >0, x= g I Ade;, (Riemann-Stieltjes integral
—lxll—e
in semi-order sense),

(5) {e;} is determined uniquely by the properties (1)-(4).

Proof. By the theorem 3, there exists a bicompact Hausdorff space

M such that R is ring-order isomorphic to the ring R(IM) of all the

continuous functions on M. Let the isomorphism be given by x <> a(M).

We will prove the following property of the representation R— R(IN).

Let 2, <a,<--<y and let order-limit x,=x. By Baire’s theorem,

the discontinuities of the function F(M )=liin x.(M) constitute a set of
>0

first category, viz. enumerable sum of non-dense sets. We have surely
(M) Z#M). In the truth, the set § (¢(M)—T(M)>0) is of first

category. Proof: If otherwise, we would have a point M, such that
(M) is continuous at M, and x(M) >#%(M,), and thus we would
obtain a continuous function 2*(M) such that (M) >=z"(M,) and
(M) > 2*(M)=x(M) on M. This contradicts to the isomorphism
R <> R(M) and the definition of « as order-limit x,. Here use is made
of the fact that a bicompact Hausdorff space is not of first category.
Next consider the set R/(M) of all the bounded functions ()
on M such that 2/(M) is different from a continuous function x(M)
only on a set of first category. We then identify two functions from
R'(M) if they differ on a set of first category. Thus R'(IMN) is divided
into classes, each class «’ containing exactly one continuous function
(M) which corresponds to an element xzeR by the isomorphism
R<>R(M). This results from the fact that the complementary to a
set of first category is dense on the bicompact Hausdorff space k.
The proof of the theorem is now immediate. We have only to
put e¢,=the element ¢ R which corresponds to the class containing the

characteristic function €}(M) of the set ﬁ(x(M )= l}. For then we
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would have |2(M) _é 2 (M) | < e and thus |x(M) —ﬁl lie, (M) | Ze,

viz,. —ee < x—-gnl hie, See for h=—|zl-e<<<H<<- <=z,
max (1;41—4;) <e. Perhaps the fact that ¢;(M)e R'(MMN) will demand proof.

However the function ej(M) defined by 1—s1i[1) (inf (1, n(x(M )—/1)+)>

belongs to R’(IM) by the above property of the representation R — R(IN).

4. Application to the Hilbert space. Let (T) be a set of mutually
commutative, bounded self-adjoint operators in Hilbert space $, and
denote by (T) the totality of the bounded self-adjoint operators com-
mutative with every operator € (T'). Similarly we-define (T)’”=((T)’)’,
(TY" = ((T)”)’ ete. R=(T)” is a ring with unit operator (=the identiy
operator) I and is commutative, since from (T')< (T) we obtain
(TY 2 (TY and hence (T)” 2(T)”’. We define a semi-order in R by
writing T=0 if and only if (T-f,f)=0 for all fe$. Then R
satisfies (I)-(IV), (VIII). Hence the theorem 4 is directly applicable
to B. Only the proof of the axioms (I) and (VIII) would be non-
trivial. However these may be proved following after F. Riesz’s idea'.

Remark. The above procedure also gives a simultaneous resolutions

T=j/1dE,l(T), s=$sz1(S) such that E,(T)ES)=E(S)E(T), if T

and S and mutually commutative bounded self-adjoint operators. Hence
our method also gives the spectral theorem of the bounded normal
(and of course umitary) operators, for such operators are of the form
T=1v—18, where T and S are mutually commutative, bounded self-
adjoint operators.

13) Uber die linearen Transformationen des komplexen Hilbertschen Raumes, Acta
Szeged, 5 (1930). Namely: Ad. (I). It will be sufficient to show that TS =0, if
IZT, S=0. Put T\=T, Tns1=Tn—Ts (n=1). Then we obtain I=T,=0 (n=1)
by induction, because of the identities Th+1=Ts (I—TW+Tn (I—TnF, I—Tri1=

(I-Tu)+Tr. Hence T= % Tfn (n=1) and thus Hm | Ty - Fit=lim (T% - f, F)=0, prov-

ing T—-Z TH. Similarly we have S= ZSm and thus 7S= ETZS] Z(Tzs,)2>0

Ad (VIII ). We will prove the ex1stence of the order-limit Tn—T from 0 <Th<T,
-< 8. By (I), {(T%-f.f)} is a bounded increasing sequence for any f, and hence
hm (Tn -f.f) exists. We have, again by (I), Tr+x = Tn+:Tn = Tr. Thus Uim (Tp+k -f,f)

=lim (7% f,f)=lm (Ty+xTn-f,f) and hence lim ((T,, Twm) f,f) =lim| Ty« f— T fI*
=(), Therefore the strong limit T, -f=T-f exists. T is surely the order-limit T'.



