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110. On the emi-ordered Ring and its Application
to the pectral Theorem.

By K6saku YOSIDA and Tadasi NAK.YAMA.
Mathematical Institute, Nagoya Imperial University.

(Comm. by T. TAKA(I, .I.A., Nov. 12, 1942.)

This note deals with some remarks about semi-ordered rings and
their application to the spectral theorem. Semi-ordered rings have been
treated jointly by Messrs. I. Vernikoff, S. Krein and A. Tovbin. We
first observe that for their result the assumption of the associative law
of multiplication is unnecessary; it follows, as the commutativity, from
the other axioms, and this fact will be of use in applications. Further,
their theorems may be obtained rather easily also from Clifford-
Lorenzen’s theorem concerning semi-ordered abelian groups by con-
sidering operator-domains. As for application, we prove a spectral
theorem in the semi-ordered ring without appealing to the spectral
theorem in vector lattice but relying upon Baire’s category theorem.
We thus obtain a new approach to the spectral theorem for bounded
self-adjoint operators in a Hilbert space.

1. Elementary observations about semi.ordered abelian groups.
Let G be a semi-ordered abelian group, that is, an abelian group which
possesses a semi-order x y (equivalent to z-y :> O) such that

(i) if xO and yO then x+yO,

(il) if xO and -xO then x=O.

We assume a further condition"

(iii) if nx 0 for a certain natural number n, then x O.

Let moreover G possess an Archimedean unit e"

for any x there exists a natural number n=n(x) such that
(iv)

And we call the totality N of those elements x in G satisfying
-e <: z e (for every t= 1, 2, ...) the radical of G. N is a normal
subgroups of G, and the factor group GIN is also a semi-ordered
group.

In virtue of the condition (iii) G is, according to Clifford-Lorenzen’s

1) Sur les anneaux semi-ordonns, C.R. URSS, 30 (1941). Cf. also H. Nakano
Teilweise geordnete Algebra, Jap. J. Math., 17 (1941).

2) A.H. Clifford: Partially ordered abelian groups, Ann. of Math., 41 (1940).
P. Lorenzen: Abstracte Begriindung der multiplikativen Idealtheorie, Maoh. Zeitschr.,
4 (1939).

3) Here we call a subgroup of G rormal when it is a kernel of an order-homo-
morphism of G. Thus a subgroup H is normal if and only if x, eH, Oy x,

implies y e H,
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theorem4’, order-isomorphically embedded in a direct sum of linearly
ordered groups"

G...G+..., Gx-,(.,.,x,...) (xeG,);

here the order relation in the direct sum is explained, as usual, com-
ponent-wise, and without losing generality we may suppose that when
x runs over G its component x exhausts G,. The image (component)
e of e is, for each , an Archimedean unit of G, and we denote the
radical of G, by N,. Evidently an element x belongs to N when and
only when x belongs to N for every a. Thus the group GIN is
embedded isomorphically in the direct sum G=G/N"

x mod. N,--, (..., x mod. N,, ...).

The order relation is preserved in the direction "--, ". Further, each
C,=G,/N, is, as an Archimedean linearly ordered group, a subgroup
of the ordered group of real numbers, and the kernel M of the homo-
morphism G--, G is a maximal normal subgroup of G. If, in parti-
cular, N consists of 0 only, that is, if the condition"

(v) if -etxe (t=1,2,...) then x=O,

is satisfied, then G itself is mapped isomorphically into the direct sum

of the Archimedean linearly ordered groups , order being preserved
in the direct direction "-o". Furthermore, if the stronger condition-

(vi) if txe (t=1,2,...) then xO,

is fulfilled, the order relation is preserved in the both directions "--,"

and "-", that is, G is order-isomorphically embedded ,in the direct
sum of . For, if x <: 0 rood. N then x z for a certain element
z, in N,, whence tx tze for every natural number t. When
this is. the case for every a, the assumption in (vi) is fulfilled and we
have x 0. Now, suppose that G possesses a domain of operators

{A}, which is by itself a semi-ordered abelian group, satisfying
the axioms (i), (ii) and such that

(vii) if x0 (in G), A0 (in .2) then AxO (in G),

4) See 2). As the proof suggested by Clifford shows, we may take as G linearly

ordered groups which are (not order-but) group-isomorphic vith G. Namely" consider

subsets P in G which satisfy the conditions" i) if x :)0 then x e P, ii) if x e P y e P
then x+yeP, iii) 0P, iv) if .mxeP (m0) then xeP. When Pis such a subset

(for instance, the set of all the positive elements of G), we can re-order G by calling

the elements of P positive; denote the semi-orderel abelian group thus obtained by

G(P). Further, if there is an element x in G such that neither x nor -x is contained

in P, then there exists a second P which contains P and x both. We may, for

example, take the set (z; kz=mp+.x, k-0, m0, ,n0, .re+n:>0) for a new t’.

From this follows that if P is a maximal such subset then G(P) is linearly orderecl.

Moreover any non-zero and non-negative element is contained in at least one maximal

such subset P, whence positive in G(P). Thus G is order-isomorphically embedded in

the direct sum of G(P)/s, P running over all the maximal such subsets in G, by leti

x correspond for each P to x itself in G(P).
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(viii) (A/B)x=Ax+Bx A(z+y)=Az/Ay.

Let moreover

possess an Archimedean unit I which satisfies lx=x

for every e G.

Then we have the Lemma" Every normal subgroup of G is allowable
with respect to 2. Proof" Let H be a normal subgroup in G, and
let z e H, A e/2. There is a natural number n such that -hi A nI
whence -n/. Ax nix.. Thus -nx Ax nx and Ax belongs to
H too, In particular the maximal normal subgrouls M are .e2-allow-
able, and the above isomorphisms are operator-isomorphisms with respect
to

2. Semi-ordered rings. Let R be a ring with a unit element e
and real multipliers. Neither the commutativity nor the associativity
of the multiplication is assumed. Let in R be defined a semi-order
such that

(I) if x:>0 and y0 than x+yO and xy0,

(II) if x0 and -0 then =0,

(III) if x0 and (real number)0 then zx0.
Further we assume that the ring unit e is an Archimedean unit"

(IV) { for_(zeanyxXthere:ze, is a positive number z=z(x) such

Then R satisfies, considered as an abelian group possessing R itself as
an (either left or right) operator domain, the conditions (i)-(iv), (vii)-
(ix) of the preceding section. And, every residue class mod. an M=M
is represented by a multiple (.e. Hence, we have, expressing the con-
dition (v), (vi) in a modified fashion,

Theorem 1. Let R satisfy, besides the above conditions,

(V) i9’ le_<:_-x-! e (t=l, 2,...) then x=O.

Then R is ri,g.isomorphic to a certain ring R(9)) of (real-valued
bounded functions over a certain space 9 {M} x ,-, x(M), such that
e is represented by 1" e(M)l. In particular, R is both associative
and commutative. The order is preserved in the direction x--,z(M),
when we order R())D in the usual anner.

Theorem 2. I.t’R satisfies the stronger condition"

(VI) inf l e exists and is equal to O,

then the order is preserved in the both directions, so that R is ring-
order-isomorphic to R(2).

5) Whence for every x in R an order-limit
1

:,; exists and
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Here, according to our construction, 9t is a certain set of maximal
normal6) ideals of R, but not necessarily all of them. However, the
theorems are still the more true if represents the totality of the
maximal normal ideals of R. So, assume this be the case. Then
is a bicompact Hausdorff space by the so-tailed weak, topology, under
which the functions in R are continuous. Furthermore, since 1 is con-
tained in R()) and since there exists for any two distinct points
M,M’ in an element x in R such that x(M):x(M’), the ring
R(M) is dense in the ring of all the continuous functions on with
respect to the metric defined by the greatest absolute value taken by
a function as its norm) Hence

Theorem 3. Let R satisfy besides (I)-(VI) the condition"

(VII) R is a Banach space by the norm IIxll=inf (-ae x ae).

Then R is ring-order-isomorphic to the ring R() of all the continuow
functions over a bicompact Huasdorff space . In particular, R is a
vector lattice, viz. lattice-ordered abelian group with real multipliers.

Remark. Let, conversely, R be a vector lattice which satisfies (I)’-
(VII)"

(I) if x0 and y:>0 then x+yO.

Such a vector lattice R is called, by S. Kakutani), an abstract (M)
space. We may, following after F. Resz and Y. Kawada), define a
multiplication xy in R by

4xy=(x+y)-(x-y), x=sup (2 Ixl-e), x=sup(x 0)-inf (x, 0).
>0

It is easy to see that R now satisfies the axioms (I)-(VIII). In this
way, the equivalence of the semi-ordered ring and the abstract (M)
space may be proved appealing neither to the spectral theorem of H.
Freudenthal nor to the representation theoremm of the abstract (M)
space.

Another method of reducing the above theorems of our semi-
ordered rings to the known results is, in case the condition (vi)is
satisfied, to complete by cuts and apply the representation theory of
vector lattices and lattice-ordered rings). When we have only the

6) Defined similarly as in 3). "Fundamental" in the sense of Vernikoff-Krein-
Tovbin, loc. cit.

7) See H. Nakano" J-’-I/’ ring r_: vector lattice, [’J:..--Gt.-,:, 218
(1941).

8) Weak topology, bicompact set and the principle of duality, Proc. 16 (1940).
See also the literatures referred to in K. Yosida" On the representation of the vector
lattice, Proc., 18 (1942).

9) F. Riesz" Sur la thorie ergodique des espaces abstraits, Acta Szeged, 10
(1941), 1. Y. Kawada" t[ M-]"] z _J=::, _k-.,r, 227 (1941).

10) Teilweise geordnete Moduln, Proc. Amsterd:,m Acad., 39 (1936).
11) See 8).
12) B. Vulich- Une dfinition du produit dans les espaces semiordonns linaires,

C.R. URSS., 26 (194.0). H. Nakano" loc. cit. in 1). T. Ogasawara" Ring lattice
/}:’_Y, :],,_t:--=-,’, 230 (1942).
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condition (v), then we have first to re-order the ring by Vernikoff-
Krein-Tovbin’s procedure so as to have (vi).

3. An abstract spectral theorem. Let R be a semi-ordered ring,
again neither associativity nor commutativity being assumed, satisfying
the conditions (I)-(IV), (VII) and, furthermore,

for any increasing sequence {x.} bounded from above
(VIII)

(x x ... y), sup x,.= order-limit x exists in R.

Then we have the
Theorem 4. There exists, for any x e R, a resolution of the identity

{e} with the properties"

(1) e-e e’e if Z
(2) if 2, then order-limzt e=e,
3) e=e for 2lx] and e=O for

(4) for ang > 0, = --ide (Riemann-StielOes integral

in se-order sense),

(5) {e} is determined uniquely by the properties (1)-(4).

Proof. By the theorem 3, there exists a bicompact Hausdorff space
such that R is ring-order isomorphic to the ring R() of all the

continuous functions on . Let the isomorphism be given by x x(M).
We will prove the following property of the representation R--,R()).
Let xx y and let order-limit x=x. By Baire’s theorem,
the discontinuities of the function (M)=lim x(M) constitute a set of

first category, viz. enumerable sum of non-den sets. We have surely

x(M) > (M). In the truth, the set (x(M)-(M)>O) is of first
M

category. Proof" If otherwise, we would have a point M0 such that
x(M) is continuous at M0 and x(Mo)(Mo), and thus we would
obtain a continuous function x*(M) such that x(Mo)x*(Mo) and
x(M) x*(M) (M) on . This contradicts to the isomorphism
R -, R() and the definition of x as order-limit x.. Here use is mad’e
of the fact that a bicompact Hausdorff space is not of first category.

Next consider the set R’() of all the bounded functions x’()
on such that x’(M) is different from a continuous function x(M)
only on a set of first category. We then identify two functions from
R’() if they differ on a set of first category. Thus R’()is divided
into classes, each class x’ containing exactly one continuous function
x(M) which corresponds to an element x eR by the isomorphism
R*-, R(). This results from the fact that the complementary to a
set of first category is dense on the bicompact Hausdorff space

The roo of the theorem is now immedia. We have only to
put e=the element e R which corresponds to the class containing the

characteristic function e(M) of the set (x(M) ). For then we
M
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would have x(M)-, e(M) , and thus Ix(M)- 2e(M) < ,
i--1 -.

viz. -e <= x-,),e<_ e for = -lxl- 2 L=llxll,
max (2+-2) . Perhaps the fact that e(M)eR’() will demand proof.

However the function e(M)defined by 1-sup(inf (1,n(x(M)-2)+))
belongs to R’() by the above prorty of the representation R R().

4. Application to the Hilbert space. Let (T) be a set of mutually
commutative, bounded self-adjoint orators in Hilbert space ,, and
denote by (T)’ the totality of the bounded self-adjoint operators com-
mutative with every operator e (T). Similarly wdefine (T)"= ((T)’)’,
(T)’"= ((T)")’ etc. R (T)" is a ring with unit operator (= the identiy
operator) I and is commutative, since from (T)(T)’ we obtain
(T)’ (T)" and hence (T)"’ (T)". We define a semi-order in R by
writing T0 if and only if (T.fif)O for all f e$$. Then R
satisfies (I)-(IV), (VIII). Hence the theorem 4 is directly apNicable
to R. Only the proof of the axioms (I) and (VIII) would be non-
trivial. However these may be proved following after F. Riesz’s ideax).

Remark. The above procedure also gives a simultaneous resolutions

T=. dE(T), S=_ 2dE(S) such. that E(T)Ea(S)=Ez(S)E(T), if T
and S and mutually commutative bounded self-adjoint operators. Hence
our method also gives the spectral theorem of the unded normal
(and of course unitary) operators, for such operators are of the form
T=/-1 S, where T and S are mutually commutative, bounded self-
adjoint operators.

13) 0ber die linearen Transformationen des komplexen Hilbertschen Raumes, Acta
Szeged, (1930). Namely" Ad. (I). It will be sufficient to show that TS>= O, if
I>_.T, S>=O. Put T=T, Tn+l=Tn--Tn (n_>_.l). Then we obtain I>=TnO (n_>_.l)
by induction, because of the identities Tn+l= Tn (I- T,,)+ T (I- T), I- T,+I=

(I-Tn)+ Tn. Hence T>= Tn (n __> 1) and thus lim T. ril=lim (Tn "f,f)---O, prov-

ing T= T. Similarly we have S-. Sn and thus TS=,.TiZj=..(TiZff>O.
m=l m-1 ,3

Ad. (VIII). We will prove the existence of the order-limit T-T from 0 __< T __< T,.
"< S. By (I), ((Tn’f,f)) is a bounded increasing sequence for any f, and hence

lim (Tn.f,f) exists. We have, again by (I), T+k >= Tn+kT, >__ T. Thus lim (T,+ -f,f)

=lira (Tn .f,f)=lim CT,,+kT,’f,f) and hence lim ((Tn-T,,,)" .f,f)=lim T,.f-
.=0. Therefore the strong linzit, T,,.f= T.f exists. T is surely the order-limit T,,.


