120 [Vol. 20,

28. A Kinematic Theory of Turbulence*.

By Kiyosi Itô.

Mathematical Institute, Nagoya Imperial University. (Comm. by S. Kakeya, M.I.A., March 13, 1944.)

1. Generalities. In the theory of turbulence¹⁾ the deviation of the velocity from its mean may be considered as a system of random vectors $u_{\lambda}(t,\mathfrak{X},\omega)$, $\lambda=1,2,3$, where $t(\in R)$ is the time parameter and $\mathfrak{X}(\in R^3)$ denotes the position and $\omega(\in (\Omega,P))$ is the elementary event. Then we have

(1)
$$\mathscr{E}_{\omega}(u_{\lambda}(\mathfrak{X},\omega)) = 0.$$

When the system $\{u_{\lambda}(t,\mathfrak{X},\omega)\}$ is of Gaussian type²⁾, we say that the turbulence is of Gaussian type.

Now we define the moment tensor of the turbulence by

(2)
$$R_{\lambda\mu}(t,\mathfrak{X};s,\mathfrak{Y}) = \mathcal{E}_{\omega}\{u_{\lambda}(t,\mathfrak{X},\omega)u_{\mu}(s,\mathfrak{Y},\omega)\}.$$

Then $R_{\lambda\mu}(t, \mathfrak{X}; s, \mathfrak{Y})$ is a positive-definite function of $(\lambda, t, \mathfrak{X})$ and (μ, s, \mathfrak{Y}) in the sense of Bochner, namely we have

(3)
$$R_{in}(t, \mathfrak{X}; s, \mathfrak{Y}) = R_{ni}(s, \mathfrak{Y}; t, \mathfrak{X}) \quad \text{and} \quad$$

(4)
$$\sum_{i,j} \xi_i \xi_j R_{\lambda_i \lambda_i}(t_i, \mathfrak{X}_i; t_j, \mathfrak{X}_j) \geq 0;$$

in fact (3) is evident by (2) and the left side of (4) is equal to $\mathscr{E}_{\omega}\left\{\left(\sum_{i}\xi_{i}u_{\lambda_{i}}(t_{i},\mathfrak{X}_{i},\omega)\right)^{2}\right\}$. Conversely the function $R_{\lambda\mu}(t,\mathfrak{X};s,\mathfrak{Y})$ satisfying (3) and (4) may be considered as the moment tensor of a turbulence of Gaussian type³⁾.

A turbulence is defined as temporally homogeneous, if its moment tensor satisfies

(5)
$$R_{\lambda\mu}(t+\tau, \mathfrak{X}; s+\tau, \mathfrak{Y}) = R_{\lambda\mu}(t, \mathfrak{X}; s, \mathfrak{Y}).$$

It is defined as spatially homogeneous, if we have

(6)
$$R_{\lambda\mu}(t, \mathfrak{X} + \mathfrak{a}; s, \mathfrak{Y}) + \mathfrak{a}) = R_{\lambda\mu}(t, \mathfrak{X}; s, \mathfrak{Y}).$$

We say that it is isotopic if we have always

(7)
$$\sum_{\lambda'\mu'} k_{\lambda'\lambda} k_{\mu'\mu} R_{\lambda'\mu'} (t, \mathfrak{X}; s, \mathfrak{X} + K(\mathfrak{Y} + \mathfrak{X})) = R_{\lambda\mu}(t, \mathfrak{X}; s, \mathfrak{Y})$$

for any orthogonal transformation $K \equiv \{k_{\lambda\mu}; \lambda, \mu=1, 2, 3\}$. We can easily prove by (3) that the isotropism implies the homogenuity.

^{*} The cost of this research has been defrayed from the Scientific Expenditure of the Department of Eduction.

¹⁾ H. P. Robertson: The invariant theory of isotropic turbulence, Proc. Cambr. Phil. Soc. 36, 1940.

²⁾ Cf. K. Itô: ガウス型確率變數系ニツイテ (全國紙上數學談話會第 261 號).

³⁾ See Theorem 3 in my above-cited note (2).

It seems to be an important and perhaps difficult problem to determine the canonical form of $R_{\lambda\mu}(t, \mathfrak{X}; s, \mathfrak{Y})$ which satisfies (3), (4), (5) and (7).

2. The temporally homogeneous and isotropic turbulence at a point. For the investigation of this subject we can consider $u_{\lambda}(t,\omega)$ and $R_{\lambda\mu}(t,s)$ respectively instead of $u_{\lambda}(t,\mathfrak{X},\omega)$ and $R_{\lambda\mu}(t,\mathfrak{X};s,\mathfrak{Y})$. By (3) and (4) we have

(3')
$$R_{\lambda\mu}(t,s) = R_{\mu\lambda}(s,t)$$
 and (4') $\sum_{i,j} \xi_i \xi_j R_{\lambda_i \lambda_j}(t_i,t_j) \ge 0$.

The conditions (5) and (7) may be written in the forms:

(5')
$$R_{\lambda\mu}(t+\tau,s+\tau) = R_{\lambda\mu}(t,s)$$
 and (6') $\sum_{\lambda'\mu'} k_{\lambda'\lambda} k_{\mu'\mu} R_{\lambda'\mu'}(t,s) = R_{\lambda\mu}(t,s)$.

Theorem 1. A necessary and sufficient condition that $R_{\lambda\mu}(t,s)$ should be the moment tensor of a temporally homogeneous and isotropic turbulence at a point is that $R_{\lambda\mu}(t,s)$ is expressible by the form:

(8)
$$R_{\lambda\mu}(t,s) = \delta_{\lambda\mu} \int_{-0}^{\infty} \cos(\xi(t-s)) F(d\xi) ,$$

where $\delta_{\lambda\mu}$ is the Kronecker's delta and F is a measure distribution on $[0, \infty)$ with the finite total measure.

Proof. Necessity. The isotropism (6') implies that $R_{\lambda\mu}(t,s)$ is an invariant tensor. Therefore we obtain $R_{\lambda\mu}(t,s) = \delta_{\lambda\mu}C(t,s)$. From the temporal homogenuity (5') and the symmetric character (3') follows that C(t,s) is a function of |t-s| only, say $C_1(|s-t|)$. Now we see by (4') that $C(|\tau|)$ is a positive-definite function of τ . Making use of the Bochner's theorem we obtain (8). The sufficiency is evident.

According to this theorem $u_{\lambda}(t,\omega)$ and $u_{\mu}(s,\omega)(\lambda \neq \mu)$ are non-correlated in this turbulence. Therefore, if we assume further that the turbulence be of Gaussian type, the three stochastic processes $\left(u_{\lambda}(t,\omega); -\infty < t < \infty\right)$, $\lambda = 1, 2, 3$, will become independent. Nevertheless each process is clearly a stationary process of Gaussian type with the correlation function $\rho(\tau) \equiv \int_{-0}^{\infty} \cos \tau \xi F(d\xi)/F([0\infty))$. In this case the problem may be reduced to the investigation of such a process.

Next we mention a theorem concerning the ergodicity of this process, which includes the result¹⁾ obtained before by the author; the proof can be achieved by the same idea and so will be omitted.

Theorem 2. A necessarity and sufficient condition that a normalized continuous (in mean) stationary process $u(t, \omega)$ of Gaussian type should be ergodic in the strongly mixing type is that its correlation function $\rho(\tau)$ satisfies

(9)
$$\lim_{\tau \to \infty} \rho(\tau) = 0.$$

The condition (9) means that the correlation coefficient tends to 0

¹⁾ See K. Itô: On the ergodicity of a certain stationary process, Proc. **20** (1944), 54–55.

122 K. ITÔ. [Vol. 20,

as the time interval increases indefinitely. In practice we may assume that it is well satisfied. Then by Theorem 2 we can see that

(10)
$$P\left\{\omega \; ; \; \lim_{T\to\infty} \frac{1}{T} \int_0^T u(t,\,\omega) u(t+\tau,\,\omega) \, dt = \rho(\tau)\right\} = 1 \; .$$

This identity justifies the practical method in which we make use of the time-mean of $u(t,\omega)u(t+\tau,\omega)$ at a certain (realized) value of ω instead of its mathematical expectation $\rho(\tau)$. It is also the case with turbulence.