
120 [Vol. 20,

28. A Kinematic Theory of Turbulence*.

By Kiyosi IT6.
Mathematical Institute, Nagoya Imperial University.

(Comm. by S. KAKEYA, M.I.A., March 13, 1944.)

1. Generalities. In the theory of turbulence) the deviation of
the velocity from its mean may be considered as a system of random
vectors u(t, , o), 2=1,2, 3, where t(eR) is the time parameter and
(eR) denotes the position and (e(2, P)) is the elementary event.
Then we have

When the system {u(t,,)} is of Gaussian type, we say that the
turbulence is of Gaussian type.

Now we define the moment tensor of the turbulence by

(2) R(t, s, )= {u(t, , )u(s, , ))

Then R(t, s, ) is a positive-definite function of (, t, ) and (Z, s, )
in the sense of Bochner, namely we have

(3) R(t, s, )=R(s, t, ) and

(4) R(t, t, ) 0

in fact (3) is evident by (2) and the left side of (4) is equal to

[(u(t, , ))}. Conversely the function R(t, s, ) satisfy-

ing (3) and (4) may be considered as the moment tensor of a turbulence
of Gaussian type).

A turbulence is defined as temporally homogeneous, if its moment
tensor satisfies

(5) R(t+r, s+, )=RAt, s, )

It is defined as spatially homogeneous, if we have

(6) R,(t, + s, +)=R(t, s, ).

We say that it is isotopic if we have always

(7) k,k,R,,(t, s, +K(+))=R(t, s, )

for any orthogonal transformation K{k , Z= 1, 2, 3}. We can
easily prove by (3) that the isotropism implies the homogenuity.

* The cost of this research has been defrayed from the Scientific Expenditure of
the Department of Eduction.

1) H.P. Robertson: The invariant theory of isotropic turbulence, Proc. Cambr.
Phil. Soc. 36, 1940.

2) Cf. K. It6 " P : 4 - (-_k- 261 ).
3) See Theorem 3 in my above-cited note (2).
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It seems to be an important and perhaps difficult problem to
determine the canonical form of R($, ; s, ) which satisfies (3), (4),
(5) and (7).

2. The temporally homogeneous and isoropic urbulence a$ a
point. For the investigation of this subject we can consider u(t, )
and R(t, s) respectively instead of u(t, , o) and R($, ; s, ). By
(3) and (4) we have

(3’) R(t, s)=R(s, t) and (4’) R(t, t) O

The conditions (5) and (7) may be written in the forms:

(5’) R(t+, s+)=R(t, s) and (6’) ,,R,(t, s)=R(t, s)

Theorem 1. A necessary and sufficient condition that R(t,s)
should be the moment tensor of a temporally homogeneous and isotropic
turbulence at a point is that Rz(t, s) is expressible by the form:

(S) RAt, s)=,
-0

where is the Kronecker’s delta and F is a measure distribution on
[0, ) with the finite total measure.

Proof. Necessity. The isotropism (6’) implies that R(t, s)is an
invariant tensor. Therefore we obtain R(t, s)=C(t, s). From the
temporal homogenuity (5’) and the symmetric character (3’) follows
that C(t,s) is a function of t-s only, say Q(s-t). Now we see
by (4’) that C([ ) i a positive-definite function of . Making use of
the Bochner’s theorem we obtain (8). The sufficiency is evident.

According to this theorem u(t,w) and u(s,w)(2Z) are non-
correlated in this turbulence. Therefore, if we assume further that
the turbulence be of Gaussian type, the three stochastic processes
(u(t, o) < t <), 2 1, 2, 3, will become independent. Never-
theless each process is clearly a stationary process of Gaussia,n type with

the correlation function e(r)-- _os In this ease the

roblem may be redueed to the investigation of sueh a roeess.
Nex we mention a theorem eoneerning he ergodieity of this

roeess, which includes the result obtained before by he author; the
roof ean be aehieved by the same idea and so will be omitted.

heorem 2. A neeessarity and sueien eondiion tha a nor-
malied eontinnous (in mean) stationary roeess (t, ) of Gaussian
type should be ergodie in the strongly mixing type is that its eorrela-
tion funetion (r) satisfies

(9) lim e(r)= 0.

he eondition (9) means tha the eorrelation eoeeient tends to 0

1) See K. ItS: On the ergodicity of a certain stationary process, Proc. 20 (1944),
54-55.
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as the time interval increases indefinitely. In practice we may assume
that it is well satisfied. Then by Theorem 2 we can see that

(10) P{,o; lim liT }T - u(t, o)u(t+r, o)dt=(r) =1.

This identity justifies the practical method in which we make use of
the time-mean of u(t,m)u(t+r,o) at a certain (realized)value of
instead of its mathematical expectation p(r). It is also the case with
turbulence.


