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134. On Baire Functions on Infinite Product Spaces.

By Yoshimichi MiBu.
Mathematical Institute, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.I.A.,, Nov. 13. 1644.)

A set will be called a Baire set if its characteristic function is a
Baire function. In euclidean space, it is well known that the set of
all Baire sets coincides with the set of all borel sets. But in general
this is not true for other spaces. Of course in any space, it is evident
that the set of Baire sets is contained in the set of borel sets. But
the converse is not true, namely the characteristic function of a Borel
set is not always a Baire function. Such an example is easily derived
in an infinite product space, by using some property of Baire functions
on this space.

Theorem 1. The value of real valued continuous function on the
product space of closed intervals [0 1] is determined by at most coun-
table coordinates. Namely let .Q=1'[9.Qa, where for any « £2,=[01]

and 6 is a set of indexes. For any continuous function f(p) on £,

there exist at most countable coordinates aj, @, ... depending on f(p),

such that for any two points p= Hspa, q=1T51,, of 2 f(p)=f(q) when
ae ae

pai=Qai (’L=1, 2, )

Proof. We define the continuous function f(p) by f.(p)=p, Let
R be the smallest Ring of real-valued continuous functions which
contains all f,(p). Then for any two different points ¢ and » there
exists f.(p) such that f,(¢) f,(r). By a theorem of Gelfand-Silov® we
see that any continuous function f(p) on £ may uniformly be ap-
proximated by a sequence of elements of R. On the other hand the
element of R is the function which depends only on finite coordinates.
So f(p) is a function which depends on at most countable coordinates.

Theorem 2. The value of continuous function on the product
space of bicompact spaces is determined by at most countable
coordinates.

Proof. Let 2= I;IG.Q,,, where for any « £, is a bicompact space

and @ is a set of indexes. By the well known theorem every bicom-

pact space may be embedded homeomorphically in an infinite product

of intervals [0 1]. So every £, can be embedded homeomorphically in

32,,:51;{9.95, where for any B2;=[01] and 6, is a set of indexes. We
a

put 6=\U6, and let 2= H9§a= T2, Then 2 can be embedded home-
a _ ae€ Bea

omorphically in £. Since £ is bicompact, the homeomorphic image

&2 of £ is closed in £. So every continuous function on £’ can always

be extended to a continuous function on £. In virtue of Theorem 1

any continuous function f(p) on £ is determined by at most countable
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coordinates fi, Pz, ..- of 2=TI 25 and so is determined by at most
Bel® _ .
countable coordinates m, ag, --- of £=T114,. Thus any continuous func-

ac®
tion g(p) on £ is determined by at most countable coordinates a, oz, ...

As every continuous function on £ may be considered as a
continuous function on £/, our theorem is completely proved.

Theorem 8. In general, the value of continuous function on an
infinite product of completely regular spaces is determined only by at
most countable coordinates.

Proof. Let !2=H@.Qa, where for any a« £, is a completely regular

a€

space and 6 is a set of indexes. By the theorem of compactification
of completely regular space, there exists for every £, a blcompact

space £, such that £, is dense in 2,. Let 2= ]T!?,,, then it is easily

seen that 2 is dense in 2. Moreover any contmuous function f(p) on
2 may be extended to a continuous function f(p) on 2. In virtue of
Theorem 2, f(p) is determined by at most countable coordinates and
80 f(p) is determined by at most countable coordinates. Q. E. D.

Theorem 4. The value of any Baire function on the produet
space of completely regular spaces is determined by at most countable
coordinates.

Proof. This is evident from the definition of Baire function and
Theorem 3.

Application. Let 2= TI,Q,,, where for any « £,=[0 1] and 6=[0 1].

Let & be the smallest countably additive class which contains all
elementary open sets. It is easily seen that every elementary open
set is a Baire set, so the element of & is also a Baire set. Conversely
it may be proved, by theorem 4, that every Baire set in £ is contained
in &.

Theorem 5. In £, & coincides with the set of all Baire sets.

Proof. It will be sufficient to show that for any continuous
function f(p) and for any real number A the set E{p:f(p)> 2} is an
element of &. For, then the sets E{p:f(p) =1}, E{p:f(p) <41}, and
E{p:f(p) < 1} also belong to & and hence by transfinite induction we
see that for any Baire function ¢(p) and for any real number 2 the
set E{p: ¢(p) > 1} belongs to K.

Let G=E{p:f(p)> 1}, then clearly G is open, so G is expressible
as the sum of elementary open sets. By theorem 1 we may suppose
the value of f(p) is determined by at most countable coordinates
ay, oz, ... S0 We may assume that every elementary open set which
is contained in G is an open set whose coordinates are restricted to a
finite number of indexes from ay, as, .... The sum of such elementary
open sets can be considered as the sum of at most countable elementary
open sets. This completes the proof. Q. E.D.

Of course a point p of £ is a closed set, but its characteristic
function is a function which depends on all coordinates.

Therefore p is not a Baire set. Thus we obtain an example of
a borel set which is not a Baire set. Next we will show examples
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of semi-continuous function which is not a Baire function. We put
go(p)=Mi9n p, where p= Igp,,. We easily see that ¢(p) is an upper
ae a€

semi-continuous function, but as the value of this function is not
determined by countable coordinates, so ¢(p) is not a Baire function.
Similarly if we put ¢(p)=Mabx P, then we have an example of

lower semi-continous function which is not a Baire function.
I wish to express my hearty thanks to Prof. Yoshida, to whom

the present paper owes much and to whom, in particular, the above
simple proof of Theorem 1 is due.



