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Abstract

We prove decidability results on the existence of constant subsequences
of uniformly recurrent morphic sequences along arithmetic progressions. We
use spectral properties of the subshifts they generate to give a first algorithm
deciding whether, given p ∈ N, there exists such a constant subsequence
along an arithmetic progression of common difference p. In the special case
of uniformly recurrent automatic sequences we explicitly describe the sets of
such p by means of automata.

1 Introduction

In this paper we are concerned with arithmetic subsequences (xk+np)n∈Z of mor-
phic sequences x = (xn)n∈Z and decision problems concerning constant such
subsequences. Namely,

Input: Two finite alphabets A and B, an endomorphism σ : A∗ → A∗ and a
morphism φ : A∗ → B∗.

Question 1: Given p ∈ N and an admissible fixed point x ∈ AZ of σ, does
there exist a constant subsequence y = ((φ(x))k+np)n∈Z ?

Question 2: Given an admissible fixed point x ∈ AZ, does there exist a con-
stant subsequence y = ((φ(x))k+np)n∈Z ?

Question 3: Does there exist an algorithm that computes the set of integers
p ∈ N satisfying the requirement of Question 1 ?
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Let us recall that Cobham showed [Cob72, Sec. 5] that arithmetic subsequences
of l-automatic sequences are l-automatic. Durand extended this result [Dur96,
Sec. I.4] to primitive substitutive sequences. The periodicity of such sequences
is decidable and the length of the period can be found [HL86, Pan86, Hon86,
Dur13a]. Therefore, Question 1 is decidable for l-automatic and primitive substi-
tutive sequences.

We provide a different proof using dynamical systems, namely subshifts, and
some of their spectral properties, for uniformly recurrent morphic sequences,
and Presburger arithmetic for automatic sequences. For uniformly recurrent au-
tomatic sequences, we show Question 2 is algorithmically decidable and there
exists an algorithm for Question 3. For the non uniformly recurrent automatic
sequences, both questions are open.

In Section 2 the basic definitions on morphic sequences and on subshift
dynamical systems are given. In Section 3 we show the relation between
constant arithmetic subsequences of uniformly recurrent sequences and the spec-
tral eigenvalues of the subshifts they generate. We recall some well-known re-
sults on dynamical eigenvalues of Sturmian [Kur03], constant length substitu-
tions [Dek78] and Toeplitz subshifts [Wil84]. As a direct consequence we observe
in Section 4 that intersections of languages coming from these subshifts should be
finite. We prove the decidability of Question 1 for uniformly recurrent morphic
sequences in Section 5. The decidability of Question 2 and Question 3 is proven in
Section 6 but only for uniformly recurrent automatic sequences. The description
of the set of integers p ∈ N satisfying the requirement of Question 1 is given by
means of allowed paths in a finite automaton.

2 Definitions and background

2.1 Words and sequences

In all this article, A will stand for an alphabet, that is a finite set of elements called
letters. A word is an element of the free monoid A∗ generated by A. The neutral
element of A∗ is called the empty word and is denoted by ǫ. We set A+ = A∗ \ {ǫ}.
For u = u0u1u2u3 · · · un−1 in An ⊂ A∗, n is called the length of u and is denoted
by |u|. One-sided sequences are elements of AN and sequences are elements of AZ.
The sets AN and AZ are endowed with the product topology. For convenience,
we use a dot to separate negative and positive indices: a sequence x ∈ AZ would
be written · · · x−2x−1.x0x1x2 · · · . We set u[p,q] = upup+1 · · · uq. The integer p is
the occurrence of the factor u[p,q] in the word u. If a factor has several occurrences
in a word u, we call the difference between two successive occurrences a gap.
We denote by L(u) the set of all factors of u and we call it the language of u.
The number of occurrences of a word v in the word u is denoted by |u|v. These
definitions also hold when u belongs to AZ or AN.

Let u and v be two words in A∗. The set {x ∈ AZ : x[−|u|,|v|−1] = uv} is called

a cylinder set and denoted [u.v], or [v] if u is the empty word. These sets generate
the product topology of AZ.
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If u = vw belongs to A∗ or AN, the word v is called a prefix of u. An arithmetic
subsequence of x in AZ (resp. AN) is a sequence of the form (uk+np)n∈Z (resp.
(uk+np)n∈N) for some k and p. The integer p is called the common difference of this
arithmetic subsequence of x.

The sequence x ∈ AN (resp. in AZ) is periodic with period p if there exists
p ∈ N such that xi = xi+p for all i ∈ N (resp. Z). Otherwise, u is non-periodic.

A sequence x is recurrent if every factor of x occurs in x infinitely often. It is
uniformly recurrent if every factor of x occurs in x with bounded gaps.

In the sequel A and B will stand for alphabets.

2.2 Morphisms and matrices

Let σ be a morphism from A∗ to B∗. When σ(A) = B, we say that σ is a coding.
If σ(A) is included in B+, it induces by concatenation a map from AN to BN.
These two maps are also called σ. To the morphism σ is naturally associated the
matrix Mσ = (mi,j)i∈B,j∈A where mi,j is the number of occurrences of i in the
word σ(j). We call it the incidence matrix of σ. We set |σ| = maxa∈A |σ(a)| and
〈σ〉 = mina∈A |σ(a)|.

2.3 Substitutions

In the sequel we use the definition of substitution presented in [Que10] and the
notion of substitutive sequence defined in [Dur98a].

The language of the endomorphism σ : A∗ → A∗ is the set L(σ) of words
appearing in some σn(a), a ∈ A.

If there exist a letter a ∈ A and a non-empty word u ∈ A∗ such that σ(a) = au
and moreover, if limn→+∞ |σn(a)| = +∞, then σ is said to be right-prolongable on
a. Analogously, we define the notion to be left-prolongable. The endomorphism σ
is prolongable on b.a if it is left-prolongable on b, right-prolongable on a and if ba
belongs to L(σ). The endomorphism σ is a substitution whenever it is prolongable
and growing (that is, limn〈σn〉 = +∞). We say σ is left-proper if there exists a ∈ A
such that σ(A) is included in aA∗. It is right-proper if there exists b ∈ A such that
σ(A) is included in A∗b. It is proper whenever it is both left and right proper.

A letter c such that limn→+∞ |σn(c)| = +∞ is called a growing letter.

It is an exercise to check that when σ is right-prolongable on a, the sequence
(σn(aa · · · ))n≥0 converges to a sequence denoted by σ∞(a). The map
σ : AN → AN being continuous, σ∞(a) is a fixed point of σ: σ(σ∞(a)) = σ∞(a).
We say it is an admissible one-sided fixed point. In the same way x = σ∞(b.a) can be
defined and is a two-sided fixed point of σ. When ba belongs to L(σ) we say x is an
admissible fixed point of the endomorphism σ. We also say that x is purely morphic
(with respect to σ) or purely substitutive when σ is a substitution. If x ∈ AZ is
purely morphic and φ : A∗ → B∗ is a morphism then the sequence y = φ(x) is
said to be a morphic sequence (with respect to φ and σ). We say y is α-morphic when-
ever the dominant eigenvalue of σ is α. When φ is a coding and σ a substitution,
we say that y is substitutive (with respect to φ and σ).
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Whenever the matrix associated to σ is primitive (that is, when it has a power
with positive coefficients) we say that σ is a primitive endomorphism. In this situa-
tion we easily check that σ∞(a) and σ∞(b.a) are uniformly recurrent. Moreover,
one has L(σ) = L(σ∞(a)) = L(σ∞(b.a)).

A sequence is primitive substitutive if it is substitutive with respect to a prim-
itive substitution. Such sequences are uniformly recurrent. As we will see later
(Theorem 22), the set of uniformly recurrent morphic sequences is exactly the set
of primitive substitutive sequences. If |σ(a)| = p is constant for all a ∈ A, we say
σ is of constant-length p. In the other case, σ is of non constant-length.

2.4 Dynamical systems, subshifts and eigenvalues

For more details, we refer to Queffélec’s book [Que10].
A topological dynamical system is a pair (X, T) where X is a compact metric

space and T : X → X a homeomorphism. The topological dynamical system
(X′ , T′) is a factor of (X, T) whenever there exists a continuous and onto map
f : X → X′ such that f ◦ T = T′ ◦ f . We say f : (X, T) → (X′ , T) is a factor
map. If f is one-to-one and onto we say (X, T) and (X′, T′) are isomorphic and
that f is an isomorphism. We call the set O(x) = {Tnx : n ∈ Z} the orbit of x ∈ X.
We say that (X, T) is minimal if every orbit is dense in X. Equivalently, the only
closed T-invariant sets in X are X and ∅. We say it is p-periodic for some p ∈ N

whenever there exists x ∈ X such that X = {x, Tx, T2x, . . . , Tp−1x} and Tpx = x.
If such an integer p does not exist, (X, T) is non-periodic. If X is a Cantor set (i.e.,
a compact space without isolated points and having a countable base consisting
of closed open sets, called clopen sets), we say (X, T) is a Cantor system.

We say that λ ∈ C is an eigenvalue of (X, T) whenever there exists a continuous
function f : X → C satisfying f ◦ T = λ f . Such a f is called an eigenfunction of
(X, T).

Suppose (X, T) is minimal. Then, by compactness, f is a constant function
and |λ| = 1. It follows that there exists α ∈ R such that λ = exp(2iπα). Such α
are called additive eigenvalues. They form an additive subgroup of R/Z

Let A be an alphabet. The shift map on AZ is the map S : AZ → AZ defined
by (Sx)n = xn+1 for all n ∈ Z. A subshift is a topological dynamical system
(X, S/X) where X is a subset of AZ. In what follows, S will stand for the shift
map independently of the alphabet we consider and S will be used instead of
S/X .

If σ is a primitive substitution and x one of its fixed points, we call the subshift

(O(x), S), also denoted (Xσ, S), the primitive substitution subshift generated by σ.
It does not depend on the choice of the fixed point x [Que10, Prop. 5.3].
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3 Relation between eigenvalues of subshifts and constant arith-

metic subsequences

In this section, given a minimal Cantor system, we recall some well-known facts
concerning the relations between its periodic behaviours and its eigenvalues.
This is part of the folklore of ergodic theory of such dynamical systems. First
we need some definitions.

Let us introduce some terminology already used to study Toeplitz subshifts
[Wil84]. Let (X, T) be a minimal Cantor system, x ∈ X and U be a clopen subset
of X. We call the set

PSp(x, U) = {k ∈ Z : Tk+npx ∈ U, ∀n ∈ Z}

the period-p skeleton of x relatively to U. We say p is an essential period of x for U if:

1. PSp(x, U) 6= ∅ and

2. p divides q for every q satisfying PSp(x, U) = PSp(x, U)− q.

The proofs of the following lemmas are left to the reader.

Lemma 1. Let x ∈ X and U be a clopen subset of X. Then, for all n,

PSp(T
nx, U) = PSp(x, U)− n.

Lemma 2. For all x, y ∈ X and all clopen sets U one has

PSp(x, U) = ∅ ⇐⇒ PSp(y, U) = ∅.

We call the following set

P(X, T) = {p ≥ 2 : p is an essential period for some clopen set U}

the periodic spectrum of (X, T)
The following proposition will be useful for our study. It states in the two first

properties that the set P(X, T) can be interpreted as the set of denominators of
additive rational eigenvalues associated to (X, T).

Together with the third property, it gives a necessary condition to have
constant arithmetic subsequences, which will be detailed in the next lemma.

Proposition 3. Let (X, T) be a minimal dynamical system and p ∈ N. Then, the
following are equivalent:

1. λ = exp(2iπ/p) is an eigenvalue of (X, T);

2. p belongs to P(X, T);

3. there exists a closed subset V of X such that {V, T−1V, . . . , T−p+1V} is a partition
of X;

4. X admits a periodic factor with essential period p.
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Remark 4. If these properties are satisfied, the set of eigenvalues associated with
(X, T) that are roots of unity is {exp(2ikπ/p) : p ∈ P(X, T), k ∈ Z}.

It is observed, and easy to prove, in [Dek78, Lemma II.2] that the partition of
Property (3) is unique up to cyclic permutation.

Proof. (1) ⇒ (2) Suppose that λ = exp(2iπ/p) is an eigenvalue of (X, T) and
f : X → C a continuous eigenfunction associated to λ. Let z ∈ X. Replacing f by
f / f (z) if needed, one can suppose f (z) = 1. Let us prove that p is an essential
period for the clopen set U = f−1({1}). By minimality PSp(x, U) is non-empty
for all x ∈ X. Suppose PSp(x, U) = PSp(x, U) − q and let n ∈ PSp(x, U). Then,
λn−q f (x) = λn f (x). Thus λq = 1 and p divides q.

(2) ⇒ (3) There exists some x ∈ X and a clopen set U such that PSp(x, U) is
not empty. From Lemma 2, the set PSp(y, U) is not empty for all y ∈ X.

Let V be the closed subset {y ∈ X : PSp(y, U) = PSp(x, U)}. It suffices to

show that {V, T−1V, . . . , T−p+1V} is a partition of X. Observe that T−pV = V.

Thus ∪p−1
i=0 T−iV is a non-empty closed T-invariant set and by minimality it is X.

Suppose there exists y belonging to V ∩ T−iV with 0 ≤ i < p. Then, using
Lemma 1, PSp(y, U) = PSp(Tiy, U) = PSp(y, U)− i. Moreover, p being an essen-
tial period it should divide i. Contradiction.

(3) ⇒ (4) Let {V, T−1V, · · · T−p+1V} be a partition of X. Define the map
π : X → {0, . . . , p − 1} such that π(x) = i if x ∈ T−iV. Then, the system
(Z/pZ, R), where R is the addition of 1 modulo p, is a p-periodic factor of (X, T).

(4) ⇒ (1) We can suppose the periodic factor is (Z/pZ, R) where R is the addi-
tion of 1 modulo p. Choose some factor map f from (X, T) onto (Z/pZ, R). Then,
it suffices to consider the map φ : X → C defined by φ(x) = exp(2iπ f (x)/p).

Corollary 5. Let (X′, T′) be a factor of (X, T). Then P(X′ , T′) is included in P(X, T).

Let us illustrate these notions and results in the framework of minimal sub-
shifts. Let (X, S) be a minimal subshift defined on the alphabet A and
x = (xn)n∈Z ∈ X. It is clear that x has a constant arithmetic subsequence
(xk+np)n∈Z if and only if k belongs to PSp(x, [a]) for some a ∈ A. We set

Per(x) = {p ≥ 1 : ∃a ∈ A, PSp(x, [a]) 6= ∅}
= {p ≥ 1 : ∃a ∈ A, ∃k ∀n, xk+np = a}.

Let P′(X, S) be the set

{p ∈ P(X, S) : p is an essential period for some clopen set [a], a ∈ A}.

and ZP′(X, S) be the set of multiples of the elements of P′(X, S).

Lemma 6. Let (X, S) be a minimal subshift and x ∈ X. Then, one has

Per(x) = ZP′(X, S). (3.1)

Proof. It is clear that P′(X, S) is included in Per(x). Hence ZP′(X, S) is also
included in Per(x). The converse inclusion is clear from the definitions.
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To answer Question 2, it is enough to answer positively Question 3. For this
purpose, we should algorithmically determine the set P′(X, S). This, together
with Proposition 3, provides a strategy to find the constant arithmetic subse-
quences: one has to find the essential periods, and thus the eigenvalues that are
roots of unity, and then to check whether this provides such a sequence.

Let us enlighten what is above by considering some well-known families of
minimal subshifts.

Toeplitz subshifts

Let x = (xn)n∈Z ∈ AZ. We say that x is a Toeplitz sequence if for all k ∈ Z there
exists p > 1 such that xk+np = xk for all n ∈ Z. That is, for every k, we can find
a constant arithmetic subsequence (xk+np)n∈Z. Observe that this does not force x
to be periodic as p is depending on k.

Some of the Toeplitz sequences are substitutive [CK97, sec. 3]. For example,
consider the substitution σ defined by σ(0) = 1000 and σ(1) = 1010. It has a
fixed point σω(0.1) = · · · 0010001000.10101000101010 · · · . Every index belongs
to a constant arithmetic progression with common difference 2p for some integer
p ∈ N. Thus this fixed point is a Toeplitz sequence.

The following proposition makes Proposition 3 more precise in the context
of Toeplitz sequences. It asserts that eigenvalues are not only characterized by
essential periods for clopen sets but for cylinder sets.

Proposition 7. [Wil84] Let x be a Toeplitz sequence and (X, S) the subshift it generates.
The following properties are equivalent:

1. λ is an eigenvalue of (X, S);

2. there exist p and an essential period q for [a], for some letter a, such that
λ = exp(2iπ/p) and p divides q.

Sturmian subshifts

Given a sequence x ∈ AZ, we define its complexity function as px(n) =
card{x[i;i+n−1] : i ∈ Z}, which gives the number of factors of length n that
occur in x. The Morse-Hedlund theorem [MH38] asserts that x is non-periodic
if and only if it satisfies px(n) ≥ n + 1 for all n ∈ N. We say that x is sturmian
whenever x is uniformly recurrent and px(n) = n + 1 for all n ∈ N. A subshift is

called sturmian if it is of the form (O(x), S), where x is a sturmian sequence.

Proposition 8. Let x be a sturmian sequence. Then it admits no constant arithmetic
subsequence.

Proof. It is well-known that the set of eigenvalues of Sturmian subshifts is
{exp (2iπnα) : n ∈ Z} for some α 6∈ Q [Kur03, Section 4.5.3]. We conclude
using Proposition 3.
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Substitutive subshifts

In this section we recall some results concerning eigenvalues associated to
primitive substitutions that will be exploited in the next section in order to solve
Question 1 of the introduction. A complete algebraic characterization of the
eigenvalues of minimal substitution subshifts can be found in [FMN96].

We fix an integer d ∈ N and consider the alphabet A = {0, 1, . . . , d − 1}.
We begin with two preliminary results where 1 ∈ Zd denotes the vector

(1, 1, . . . , 1).

Lemma 9. Let M be a square d × d-matrix and p be a prime integer. The following
properties are equivalent:

1. there exists m ∈ N such that 1Mm ∈ pZd ;

2. 1Md ∈ pZd.

Proof. We will prove that (1) ⇒ (2), the converse is obvious.
If m is less or equal to d then the conclusion is clear. Suppose m greater

than d. One can suppose m = min{i ∈ N : 1Mi ∈ pZd}. Applying Cayley-
Hamilton theorem to M ensures that there exist some integers a0, a1, · · · , ad−1

such that 1Md = a01 + a11M + · · ·+ ad−11Md−1. Then 1Mm+d−1 = a01Mm−1 +
a11Mm + · · · + ad−11Mm−1+d−1, where every term 1Mi except 1Mm−1 belongs
to pZd. It follows that a01Mm−1 belongs to pZd. As p is prime and 1Mm−1 6∈
pZd, p divides a0. With the same method and multiplying successively 1Md by
Mm−2, Mm−3, . . . , Mm−d, we establish that p divides a1, a2, . . . , ad−1. As a conse-
quence, p divides 1Md.

Lemma 10. Let (X, S) be a non-periodic subshift generated by a left-proper primitive
substitution σ : A∗ → A∗ with incidence matrix M and let p be an integer. The
following properties are equivalent:

1. exp(2iπ/p) is an eigenvalue of (X, S) ;

2. there exists m ∈ N such that p divides |σm(a)| for all a ∈ A ;

Moreover, when p is a prime number, this is equivalent to:

3. 1Md = (|σd(a)|)a∈A belongs to pZd, where d = |A|.

Proof. The equivalence between (1) and (2) follows from the proof of Lemma 27
in Durand’s article [Dur00]. The equivalence between (2) and (3) comes from
the fact that Mm is the incidence matrix of σm, for every m ∈ N. Therefore,
1Mm ∈ pZd is the vector (|σm(a)|)a∈A . We conclude using Lemma 9.

The previous lemma is stated for left-proper substitutions, but it is clear that
it also holds for right-proper substitutions.

Given a minimal subshift (X, S) and p ∈ P(X, S) two situations can occur,
sup{n : pn ∈ P(X, S)} is bounded or not. We will need this information to
describe precisely P(X, S).
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To this end, we denote PP(X, S) the set of prime numbers belonging to P(X, S)
and PP∞(X, S) the set of p ∈ PP(X, S) such that pn belongs to P(X, S) for all n.

Lemmas 10 and 11 respectively determine algorithmically PP(X, S) and
PP∞(X, S). For p ∈ PP(X, S) \ PP∞(X, S), Lemmas 12 and 13 provide an algo-
rithm to compute the integer nmax such that pnmax belongs to P(X, S) but pnmax+1

does not. We will need this result for our decidability problem in the next section.

Lemma 11. [Dur00, Lemma 29] Let M be a d × d matrix and p a prime number. The
following properties are equivalent:

1. ∀n ∈ N, ∃k ∈ N : 1Mk ∈ pnZd ;

2. p divides gcd(a0, . . . , ar), where

r = max{i ∈ N : {1, 1M, . . . , 1Mi} is free}

and Q(X) = ∑
r+1
i=0 aiX

i ∈ Z[X] is the characteristic polynomial of the restriction
of M to the vector subspace spanned by 1, 1M, . . . , 1Mr.

Lemma 12. Let M be a d × d matrix and p a prime number. If there exist n ∈ N

and i ∈ N such that each of 1Mi, . . . , 1Mi+d belong to pnZd and does not belongs to
pn+1Zd, then for all j ≥ i, 1Mj does not belong to pn+1Zd.

As a consequence, if there exist two integers n and k satisfying 1Mk ∈ pnZd, then,
in particular, the vector 1Mnd belongs to pnZd.

Proof. We only sketch the proof, the arguments used are those of Lemma 9. By
contradiction, let j > i be the smallest integer such that 1Mj+d belongs to pn+1Zd.

Let Q(X) = ∑
r+1
l=0 alX

l be the characteristic polynomial of M. Then, by Cayley-
Hamilton theorem, every coefficient al , 0 ≤ l ≤ r, is a multiple of p, which can be
seen by multiplying the equality by successively Mj+d−1, Mj+d−2, . . . , Mj. This
leads to a contradiction.

Lemma 13. Let M be a d × d matrix and p a prime number such that

• 1Md ∈ pZd,

• ∃n ∈ N : ∀k ∈ N, 1Mk 6∈ pnZd.

Let nmax = max{n ∈ N : ∃k ∈ N, 1Mk ∈ pnZd} and kmin = min{k ∈ N : 1Mk ∈
pnmaxZd}. Let K = max{k ∈ N : pk−1 ≤ maxj ∑i Mi,j}. Then

kmin ≤ pd and nmax ≤ Kpd.

Proof. The inequality kmin ≤ dnmax is a consequence of the previous lemma. We
detail the proof of the second inequality.

We define a graph G whose vertices belong to [0, p − 1]d \ {(0, . . . , 0)} and
are given by the decomposition in base p of the vectors 1Mk for k ∈ N. More
precisely, G is the unique oriented graph defined as follows:
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• the vector 1 belongs to G;

• there is an edge from V to W with label i if

VM = pkVk + pk−1Vk−1 + · · ·+ pV1 + V0,

with V0, . . . , Vk in [0, p − 1]d \ {(0, . . . , 0)}, and W = Vi for some i.

Notice that the labels of the edges are bounded by K.
Let N(k) = max{n ∈ N : 1Mk ∈ pnZd}. The sequence k 7→ N(k) is non-

decreasing and is eventually constant equal to nmax.
The aim of this graph is to give a bound for kmin, that is, the first k such that

N(k) = nmax.
Observe that the growth of N(k) is controlled by the paths of length k starting

from 1. Indeed, for k ∈ N, let P1, . . . , Pm be these paths. To each path Pi, we
associate s(i), the sum of its labels. Then, N(k) = min1≤i≤m s(i). Let Pi be a path
realizing this minimum. Notice that, as k 7→ N(k) is bounded by nmax, any cycle
in Pi should be labelled by 0. Hence, deleting the cycles in Pi, whose weight is 0
in s(i), the remaining path has length at most pd and thus s(i) ≤ Kpd. In other
words, one has kmin ≤ pd and nmax ≤ Kpd.

Constant-length substitutions

Let us now consider some particular minimal substitution subshifts where the
situation is easier to handle.

The group of eigenvalues for minimal constant-length substitution subshifts
has been determined by Dekking [Dek78]. To this end he introduced the notion
of height of a substitution. Let σ be a primitive substitution of constant-length
and x = (xn)n∈Z one of its fixed points. The height of σ is

h(σ) = max{n ≥ 1 : (n, |σ|) = 1, n divides g0},

where g0 = gcd{n ≥ 1, xn = x0}.

Theorem 14 ([Dek78]). Let σ be a primitive constant-length substitution and (X, S)
the subshift it generates. Suppose (X, S) is non-periodic. Then,

P(X, S) = {p ∈ N : p divides h(σ)|σ|n for some n ∈ N} .

Moreover, the group of eigenvalues of (X, S) is

{exp (2iπq/p) : q ∈ Z, p ∈ P(X, S)} .

Remark 15. As a consequence, let us recall the well-known fact that subshifts aris-
ing from primitive constant-length substitutions only admit eigenvalues that are
roots of unity.

This does not hold for non-constant length substitution subshifts. For exam-
ple, consider the subshift arising from the Fibonacci substitution σ : 0 → 01,

1 → 0. The set of its eigenvalues is {exp(2iπnα) : n ∈ N} with α = (
√

5 − 1)/2
[Kur03, Sec. 4.3.1]. The only eigenvalue that is a root of unity is 1.
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Example. Let us consider the substitution σ defined by 0 → 0213; 1 → 1341;
2 → 4104; 3 → 0413; 4 → 2134 [Que10, sec. 6.1.1]. Its length is |σ| = 4. Following
the algorithm of Dekking [Dek78, Remark II.9], we can compute h(σ) = 3. We
conclude that the periodic spectrum of the underlying dynamical system (X, S)
is P(X, S) = {3δ × 2n : δ ∈ {0, 1}, n ∈ N}.

Automatic sequences

Let σ : A∗ → A∗ be a substitution of constant-length l and φ : A∗ → B∗ be a
coding. Let x be a fixed point (in AN or AZ) of the σ. The sequence y = φ(x) is
called l-automatic. It is a substitutive sequence with respect to a constant-length
substitution. A huge literature exists on this family of sequences [AS03].

4 An application to intersections of languages

Below we say that a language is Toeplitz, Sturmian, morphic, automatic, ... when-
ever it is the language of a sequence of the same type.

In a recent paper [RS18] it is observed that k-automatic sequences and Stur-
mian sequences cannot have arbitrary large factors in common. It is not surpris-
ing as it is a straightforward consequence of the well-known results recalled in
the previous section and basics on dynamical systems. In the same spirit the
following proposition can be established. Before we need the following lemma.
We recall a language L is factorial if for all u ∈ L, all words occurring in u belongs
to L.

Lemma 16. Let L1 be a p-automatic language and L2 be a factorial language such that
L1 ∩ L2 is infinite. Then there exists a primitive p-automatic language L′

1 included in
L1 such that L′

1 ∩ L2 is infinite.

Proof. The proof is left to the reader. Hint: decomposition into sub-substitutions
as in Proposition 15 in [Dur98b] may be used.

Lemma 17. Let L1 be a morphic language and L2 be an infinite uniformly recurrent
factorial language such that L2 is included in L1. Then L2 is morphic.

Proof. We left the proof to the reader. It uses the decomposition into sub-substi-
tutions.

Proposition 18. Let L1 and L2 be two languages. Then, L1 ∩ L2 is finite in all the
following situations:

1. L1 is automatic and L2 is sturmian;

2. L1 is sturmian and L2 is Toeplitz;

3. L1 is morphic and L2 is sturmian associated to a non quadratic rotation number;
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Proof. We give some hints. The details are left to the reader. We proceed by
contradiction. We suppose L1 ∩ L2 is infinite.

For Assertion (1) we first have to apply Lemma 16 in order to deal with prim-
itive morphic languages. Assertions (1) and (2) can be deduced from the previ-
ous section applied to the subshifts generated by the languages. For Assertion
(3), as sturmian sequences are uniformly recurrent one necessarily has that L2 is
included in L1. Then we apply Lemma 17 and conclude with the fact that mor-
phic subshifts that are also sturmian are α-morphic for some quadratic number α
[DDM00].

When L1 is α-morphic primitive with α 6∈ Z and L2 is Toeplitz we would also
like to conclude that L1 ∩L2 is finite but we did not find obvious arguments. One
can show that when the underlying substitution has determinant ±1 or has all its
(matrix) eigenvalues with modulus greater or equal to 1 then L1 ∩L2 is finite but
we leave the whole case as a question.

5 Constant arithmetic subsequences and eigenvalues for mini-

mal morphic subshifts

In this section we prove the following theorem. Notice that its second statement
corresponds to a positive answer to Question 1 for uniformly recurrent morphic
sequences.

Theorem 19. Let y ∈ BZ be a uniformly recurrent morphic sequence with respect to
the endomorphism σ : A∗ → A∗ and the morphism φ : A∗ → B∗. Let (Y, S) be the
minimal subshift it generates. Then the following properties hold.

1. The periodic spectrum of (Y, S) is algorithmically computable.

2. Given an integer p ∈ N, it is algorithmically decidable whether y contains a letter
in arithmetic progression with common difference p.

Let us describe the way we proceed. We will consider two cases. We will
begin considering purely substitutive sequences. Our algorithms rely on proper-
ties concerning non-periodic sequences. Thus we first consider the periodic case.
It is easy to treat and provides all the letters appearing in x in arithmetic progres-
sion. We can then process, in the non-periodic case, with Algorithm 1 to compute
the periodic spectrum. It is a requirement to apply Algorithm 2, which proves
the second statement of the above theorem.

The general case of uniformly recurrent morphic sequences will come as a
consequence.

Remark 20. Let y ∈ AZ be a uniformly recurrent sequence and p be some positive
integer. If there exists n0 such that (yk+np)n>n0 is constant, then, due to uniform
recurrence, for any z in the subshift generated by y, there exists i ∈ [0, p) such
that (zi+np)n∈Z is constant. As we are considering uniformly recurrent sequences
in this section, it is enough to consider any admissible one-sided fixed point of σ
to check whether x contains constant arithmetic subsequences.
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Below, the inputs are an endomorphism σ : A∗ → A∗, a morphism
φ : A∗ → B∗, x ∈ AZ an admissible fixed point of σ and y = φ(x) a uniformly
recurrent sequence belonging to BZ. We recall it is decidable to check whether
y is uniformly recurrent or not, and uniformly recurrent morphic sequences are
substitutive sequences with respect to primitive substitutions [Dur13b]. Thus, in
Sections 5.1, 5.2 and 5.3, we suppose the endomorphism σ is primitive.

Let (X, S) be the minimal subshift generated by x and (Y, S) be the minimal
subshift generated by y. We set M = Mσ. Algorithms 1 and 2 below answer
positively to the decidability of Question 1 for purely substitutive sequences with
respect to primitive substitutions.

We treat the general case in Section 5.4.

5.1 The periodic case

In this section, we consider the particular case of a left-proper primitive substi-
tution σ : A∗ → A∗ right-prolongable on a ∈ A. Let x = σω(a), (X, S) be the
minimal substitution subshift generated by σ and M its incidence matrix.

It is decidable to check whether x is periodic [Dur12]. Moreover, if the answer
is positive, this algorithm gives a period q for the sequence x. As a consequence
of the Fine and Wilf Theorem [Lot02, Theorem 8.1.4], the essential period of x is
a divisor of q. Thus, to find this essential period, it suffices to consider the factor
x[0,q−1] of x and check if it has period p for every divisor p of q. The smallest such
period p is the essential period of x.

Then the periodic subshift generated by x has the following periodic spec-
trum:

P(X, S) = {p′ ∈ N : p′ divides p}.

Hence, for each i ∈ N, there exists a constant arithmetic subsequence starting
at index i, with an essential period pi that divides p. All the pi can be determined
by studying the occurrences of letter xi in the factor x[0,p−1] of x.

For the sequel, we suppose that the subshift (X, S) is non-periodic.

5.2 Algorithm 1: determining P(X, S) when σ is left-proper

In order to determine P(X, S) we first determine the set PP(X, S) of prime num-
bers belonging to P(X, S). Observe that from Proposition 3 and Lemma 10 the set
PP(X, S) is finite. This set is composed of two types of primes. As in Section 3,
let PP∞(X, S) be the set of p ∈ PP(X, S) such that pn belongs to P(X, S) for all
n. For p ∈ PP(X, S) \ PP∞(X, S) we set

nmax(p) = max{n : pn ∈ P(X, S)}.

Let

PP∞(X, S) = {p1, . . . , pk} and PP(X, S) \ PP∞(X, S) = {q1, . . . , ql}.
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Observe that the set of additive eigenvalues of (X, S) being a subgroup of
R/Z, P(X, S) is the set of integers

∏
1≤i≤k

p
ri
i ∏

0≤j≤l

q
sj

j (5.1)

with ri and sj in N such that sj ∈ [0, nmax(qj)] for 1 ≤ i ≤ k, 0 ≤ j ≤ l.

Step 1. Determine PP(X, S)

According to Lemma 10, denoting by P the set of prime numbers,

PP(X, S) = {p ∈ P : p divides gcd((1Md)i, 1 ≤ i ≤ d)},

which is clearly computable.

Step 2. Determine PP∞(X, S)

We use Lemmas 10 and 11.

• Compute r = max{i ∈ N : {1, 1M, . . . 1, Mi} is free}.

• Compute M̃ the restriction of M to the vector subspace spanned by
1, 1M, . . . , 1Mr.

• Determine its characteristic polynomial Q(X) = ∑
r+1
i=0 aiX

i ∈ Z[X].

• Compute gcd(a0, . . . , ar). Its prime divisors form the set PP∞(X, S). We set:

PP∞(X, S) = {p1, p2, . . . , pk}.

where the pi’s are pairwise distinct.

Step 3. Determine the maximal power qn for q ∈ PP(X, S) \ PP∞(X, S)

We use Lemma 12. Let Q = max(PP(X, S) \ PP∞(X, S)).

• Starting from n = 1 :

– Compute gn = gcd((1Mnd)1, . . . , (1Mnd)d).

– Determine g̃n = max{g ∈ N : g|gn and gcd(g, pm) = 1 for
1 ≤ m ≤ j}.

• Carry on till g̃n = g̃n+1. According to Lemma 13, it will halt in a finite time
bounded by KQd, where K is defined as in Lemma 13.

Let g̃n = qn1
1 · · · q

nl
l . Then, PP(X, S) \ PP∞(X, S) = {q1, . . . , ql} and

ni = nmax(qi), 1 ≤ i ≤ l.
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Step 4. Output of the algorithm

One obtains P(X, S) as described in (5.1). With this output and Proposition 3
we are able to describe the whole group of rational eigenvalues associated to
the system (X, S): they are the complex numbers exp(2iπq/p) with q ∈ Z and
p ∈ P(X, S).

Remark 21. In the case of a 2-letter alphabet, Host [Hos86, sec. 2.3] established an
algorithm that computes P(X, S) for non constant-length substitution subshifts.
We recall it below.

Let σ be a non constant-length substitution. Let M be its incidence matrix,
with determinant d and trace T. Then

P(Xσ, S) = {p ∈ N : p divides some w × rn for some n ∈ N},

where:

• r = gcd(d, T) ;

• the prime divisors of w are those of |σ(0)| and |σ(1)| that do not divide r,
with the same exponents as in |σ(0)| − |σ(1)|.

5.3 Algorithm 2: for a given p, checking if x has a constant arithmetic

subsequence with common difference p, when σ is left-proper

This corresponds to the decidability of Question 1 for fixed points of primitive
substitutions. Recall that we consider a non-periodic substitution subshift (X, S)
and that the inputs are given by Theorem 19.

Let p be an positive integer.

Step 1. Determine P(X, S) as described in Algorithm 1.

We start by determining the greatest divisor p̃ of p that belongs to P(X, S). Fol-
lowing the notations given in Algorithm 1, p̃ is of the form p̃ = pr1

1 · · · p
rk
k qs1

1 · · · q
sl
l

with ri ∈ N, with 1 ≤ i ≤ k, and, 0 ≤ β j ≤ nmax(qj), with 1 ≤ j ≤ l. We can
easily observe that the sequence x contains a letter in arithmetic progression with
common difference p if and only if it contains a letter in arithmetic progression
with common difference p̃ (see Lemma 6).

Step 2. Check if p̃ corresponds to a letter in arithmetic progression in x.

There exists, according to Lemma 10, an integer mp such that p̃ divides |σmp(a)|
for all a ∈ A. Due to Lemma 12, we can take mp = d max{r1, . . . , rk, s1, . . . , sl}.
For every integer i such that 0 ≤ i ≤ p̃ − 1, check if (n, a) 7→ (σmp(a))i+np̃ is
constant on {(n, a) : a ∈ A, 0 ≤ i + np̃ ≤ |σmp(a)| − 1}. If such an integer i exists,
then x has a letter in arithmetic progression with common difference p̃ (and thus,
also with common difference p) starting at index i. If not, there does not exist
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any letter in arithmetic progression with common difference p̃ (and thus, none of
common difference p).

Example. Let σ be the left-proper primitive substitution defined on the alpha-
bet A = {0, 1} by 0 7→ 01 and 1 7→ 0110. Its incidence matrix is

M =

(

1 2
1 2

)

.

We can check that the unique fixed point x ∈ AZ of σ is not periodic. As σ

is left-proper and |A| = 2, it suffices to compute M2 =

(

3 6
3 6

)

, which gives

1M2 = (6, 12). Since gcd(6, 12) = 6, the prime integers in P(Xσ , S) are 2 and 3.
Following Algorithm 1, we establish that P(Xσ , S) = {3m, 2× 3m : m ∈ N}.

Remark that σ(1) has no arithmetic progression with common difference 2.
As |σ(0)| and |σ(1)| are divisible by 2, it follows that x does not have any letter
in arithmetic progression with common period 2.

Using the same method (Step 2 of Algorithm 2) with

σ2 :

{

0 → 010110
1 → 010110011001

we see that x does not contains any letter in arithmetic progression with com-
mon difference 3, but it admits arithmetic progressions with common difference
6: x6n = 0 and x6n+1 = 1 for all n ∈ Z.

5.4 Algorithm 3: for a given p, checking if y has a constant arithmetic

subsequence with common difference p, general case

We recall that the general case is that y is a uniformly recurrent morphic sequence.
Thus the inputs are an endomorphism σ : A∗ → A∗, a morphism φ : A∗ → B∗,
x ∈ AZ an admissible fixed point of σ with y = φ(x). Let (X, S) and (Y, S) be the
respective subshifts these sequences generate.

Observe that even if y is uniformly recurrent, σ is not necessarily primitive,
it can even have erasing letters, and φ is not necessarily a coding. Nevertheless
one can find a primitive substitution σ, with an admissible fixed point x′, and a
coding φ′ such that y = φ′(x′). Moreover, this can be done algorithmically.

Theorem 22. [Dur13b] Uniformly recurrent morphic sequences are primitive substitu-
tive sequences.

The fact that this can be done algorithmically can be easily deduced from the
proof of this theorem [Dur13b, Section 5.1] with the additional property that the
substitution can be chosen left-proper.

Consequently, we suppose, without loss of generality, that σ is a left-proper
primitive substitution and φ is a coding. In addition, and again without loss of
generality, we suppose φ : (X, S) → (Y, S) is an isomorphism [DHS99, Dur00,
Prop. 31], and thus that P(Y, S) = P(X, S).
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Then, to check whether, for a given p > 1, there exists a constant arithmetic
subsequence (yk+np)n equal to some letter a, it is necessary and sufficient to check

whether (xk+np)n is a sequence on the alphabet φ−1({a}).
Let us translate this into an algorithm. Let p ≥ 1.

Step 1.

Following the algorithms in [Dur13b] and [Dur00], we compute

• a left-proper primitive substitution ζ : B∗ → B∗ with fixed point z,

• a coding ψ : B∗ → A∗ such that ψ(z) = y.

Let (Z, S) be the subshift generated by ζ. The factor map ψ : (Z, S) → (Y, S) is an
isomorphism [DHS99, Dur00].

Step 2.

Apply Algorithm 1 to ζ to determine P(Y, S) = P(Z, S). Choose an integer
p̃ ∈ P(Y, S) as in Step 1 of Algorithm 2.

Step 3. Check if there exists a subsequence (zk+np̃)n defined on an alphabet φ−1({a}),
a ∈ A.

We proceed as in the Step 2 of Algorithm 2 except that one has to check whether
one of the maps (n, b) 7→ (ζmp (b))k+np̃ has all its images in some φ−1({a}), a ∈ A.

If it is the case for some i and a ∈ A, then p̃, and thus p, corresponds to a
constant arithmetic subsequence of y. Otherwise, it is not.

Example. Let σ be the substitution defined on the alphabet A = {0, 1, 2} by
0 → 02, 1 → 2 and 2 → 10. Following the algorithm of Durand [Dur00, proof of
Prop. 31], we find that (Xσ, S) is isomorphic to (Xτ , S) where τ is the left-proper
substitution defined by 1 → 6134242, 2 7→ 61342426134242, 3 7→ 6134261356135,
4 7→ 613426135, 5 7→ 6134261356135, 6 7→ 613426135, whose incidence matrix is

Mτ =

















1 2 3 2 3 2
2 4 1 1 1 1
1 2 3 2 3 2
2 4 1 1 1 1
0 0 2 1 2 1
1 2 3 2 3 2

















.

If we compute the sum of each column of M6
τ (to apply algorithm 1), we obtain the

vector (930072, 1860144, 1675961, 1159797, 1675961, 1159797) whose entries have
greatest common divisor equal to 1. Thus, the substitution σ does not admit
any non-trivial rational eigenvalue. As a consequence, no sequence of Xσ has a
constant arithmetic subsequence.
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6 The case of uniformly recurrent automatic sequences

In Section 3 we defined automatic sequences. We recall below that these
sequences correspond exactly to definable sets in well-chosen extensions of Pres-
burger arithmetic, Section 6.1. Then, we aim to show that for such a framework
Question 1 is decidable even in the non-primitive case. The proof is immediate
once we recall classical results on Presburger arithmetic. Then using the charac-
terization of the eigenvalues of minimal subshifts generated by constant-length
substitutions given by Dekking [Dek78], we answer positively to Question 2 and
Question 3 for uniformly recurrent automatic sequences.

6.1 Automatic sequences and Presburger arithmetic

The Presburger arithmetic [Pre29, Pre91] on N = {0, 1, . . . } is the first order logical
structure 〈N,+〉, on Z it is 〈Z,≥,+〉. That is the set of formulas without free
variables composed of elements of K = N or Z, variables taking values in K,
addition, equality,

• the connectives ∨ (or), ∧ (and), ¬ (not), → (then), ↔ (iff), and,

• the quantifiers: ∀ (for all), ∃ (there exists),

We refer the reader to Rigo’s book [Rig14] for more details. Observe that the order
relation ≥ is definable in 〈N,+〉 noticing that n ≥ m if and only if there exists
k ∈ N such that n = m + k. Thus, 〈N,+〉 = 〈N,≥,+〉.

A subset E ⊂ K is definable if there exists a map φ from K to the set of formulas
over 〈K,≥,+〉 such that E is the set of numbers n ∈ K such that φ(n) is true. It is
well-known that the definable sets are the finite unions of arithmetic progressions
and that this logical structure is decidable. This means that given a formula there
exists an algorithm answering in finite time whether this sentence is true or false.

Fix l ≥ 2 an integer. We define the function Vl on K as Vl(0) = 1 and Vl(n) = li

where li is the largest power of l dividing n (e.g. V2(12) = 4).
We consider the first-order logical structure 〈K,≥,+, Vl〉. It is an extension of
the Presburger arithmetic. We define formulas and l-definable sets as we did be-
fore. This structure is again decidable [BHMV94, Theorem 4.1 and Corollary 6.2].
We say x ∈ AK is l-definable if for all a ∈ A there exists a formula φa defining
the set {n ∈ K : xn = a} in the theory 〈K,≥,+, Vl〉. We say the formulas (φa)a∈A
define x.

Theorem 23. Let l ∈ N and x ∈ AK. Then the following properties are equivalent:

1. x is l−automatic ;

2. x is l−definable.

In the theory 〈K,≥,+, Vl〉, the property “x admits a letter a in arithmetic
progression with common difference p ≥ 1” is given by the sentence

∃a, ∃i : ∀k ∈ K, φa(i + pk)
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and therefore is decidable, for any given p ∈ K. Observe that multiplication by
a constant, here p, is definable in the Presburger arithmetic, that is, once some
p ∈ N is fixed, the set S = {n : ∃k ∈ Z, n = kp} is definable where kp is
the abbreviation for k + · · ·+ k (p times). Whereas the multiplication of natural
numbers is not definable in 〈Z,≥,+, Vl〉 [Bès01]. That is, the set {(x, y, n) ∈ K3 :
xy = n} is not definable in 〈K,≥,+, Vl〉. If it was, then 〈K,≥,+, Vl〉 would
include the Peano arithmetic which is known to be undecidable.

Now we suppose x belongs to AK and is l-automatic. Then, given some
p ≥ 1, the property “x admits some letter a in arithmetic progression with com-
mon difference p ≥ 1” is given by the following formulas indexed by a:

∃i : ∀k ∈ K, φa(i + pk).

We proved the following theorem.

Proposition 24. Question 1 is decidable for automatic sequences.

Observe that Question 2 can be described by the following formula:

∃p ≥ 1, ∃i : ∀k ∈ K, φa(i + pk).

But here this formula uses the multiplication of two variables and thus it is not a
formula from 〈K,≥,+, Vl〉. Hence we cannot conclude directly the decidability
of this question. It is possible that this statement could be rewritten into a formula
from 〈K,≥,+, Vl〉 but we did not find it.

6.2 Heights and eigenvalues of minimal constant length substitutions sub-

shifts

We recall some well-known results on minimal constant length substitution sub-
shifts.

Let us consider a primitive constant-length substitution σ defined on the
alphabet A. We set d = cardA. We denote l its length and h its height (possi-
bly equal to 1). Let x ∈ AZ be one of its admissible fixed points and (X, S) the
minimal subshift generated by σ. It is decidable to know whether x is periodic
or not [Hon86, ARS09]. As the periodic case has been studied in Section 5.1, we
suppose for the sequel that (X, S) is non-periodic.

In that case, we recall (Theorem 14) that the periodic spectrum is

P(X, S) = {divisors of some h × lm, with m ∈ N}. (6.1)

Let us recall some well-known properties of the height. Let

gk = gcd{n ≥ 1, xk+n = xk}.

Then one has the following property [Dek78, Rk. II.9 (ii)]

h =max{n ≥ 1 : (n, l) = 1, n divides gk}
=max{n ≥ 1 : (n, l) = 1, n divides g0}.

For all i ∈ N we set Ai = Ai(x) = {xi+nh : n ∈ Z}.
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Proposition 25. [Dek78, Rk. II.9 (ii)] The height h of σ is algorithmically computable.
Moreover (Ai)0≤i<h is a partition of A and it is algorithmically computable.

Of course, i ≡ j mod h if and only if Ai = Aj. Observe that if h = 1 then this
partition is reduced to the whole alphabet A. For the other extremal situation,
h = d implies x is periodic.

6.3 Periods in primitive automatic subshifts

Let y ∈ BZ be a primitive automatic sequence, that is y = φ(x) where σ is a
primitive constant-length substitution, x ∈ AZ one of its admissible fixed points
and φ a coding.

Consider (X, S) and (Y, S) the minimal subshifts defined by x and y respec-
tively. The subshift (Y, S) is clearly a factor of (X, S) as φ defines a factor map
from (X, S) onto (Y, S). Consequently the set P(Y, S) is included in P(X, S).

To answer Question 2, it is sufficient to answer positively Question 3. For this
purpose, we should algorithmically determine the set Per(y). We recall it is equal
to ZP′(Y, S), Section 3. Thus, to answer Question 3 it is sufficient to determine
P′(Y, S) which is included in P(Y, S) and thus in P(X, S).

We proceed as follows. We determine the alphabet consisting of the letters
occurring in every possible arithmetic subsequence with common difference of
the form h × lm, m ∈ N. Due to the regularity of the construction (inherited by
the constant-length of the substitutions we are dealing with) described below, all
these alphabets can be represented as vertices of a directed edge-labelled graph
G = (V, E) and the sequence y admits a constant arithmetic subsequence if and
only if one of those alphabets equals {b}, b ∈ B.

6.4 A graph to describe the sets P′(X, S) and P′(Y, S)

We keep the assumptions and notations of Section 6.2 and Section 6.3, in particu-
lar the partition of A into the subsets Ai given by Proposition 25 for σ.

We define a graph, G(σ), that will characterize P′(X, S) and P′(Y, S).
Let G′ = (V ′, E′) be the directed graph where V ′ is the family of subsets of A

and where (C,D) is an edge of E′ whenever there exists some integer i, 0 ≤ i < l,
such that

D = {σ(b)i : b ∈ C}.

Moreover we will consider the edges-labelling function f : E′ → {0, . . . , l − 1}
defined by f (C,D) = i. We say the vertex D is reachable from C whenever there
exists a finite sequence of edges (C, C1)(C1, C2) . . . (Ci−1, Ci)(Ci ,D).

Let G(σ) = (V, E) be the subgraph of G′ where V is the set of vertices that are
reachable from some vertices Ai, i ∈ {0, . . . , h − 1}. A walk of G(σ) of length i is a
finite sequence of edges of the type (C1, C2)(C2, C3) . . . (Ci−1, Ci). The vertex C1 is
called the starting vertex of this walk and Ci the terminal vertex. The label of this
path is the finite sequence ( f (C1, C2), f (C2, C3), . . . , f (Ci−1, Ci)). A walk of G(σ) is
called admissible if it starts from one of the vertices Ai, 0 ≤ i ≤ h − 1.
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Example 1. Let us consider the substitution defined on the alphabet
A = {0, 1, 2, 3} by σ(0) = 013, σ(1) = 102, σ(2) = 231, σ(3) = 320. It has height
h = 2, which leads to the following partition of A: A0 = {0, 3}, A1 = {1, 2}.

We obtain the following graph:

{0, 3} {1, 2}

A0 A1
1

0,2 0,2

1

Example 2. Now, consider the substitution σ defined on the alphabet
A = {0, 1, 2, 3} by σ(0) = 01230, σ(1) = 12301, σ(2) = 21012, σ(3) = 30123.
It has height h = 2, which leads to the following partition of A: A0 = {0, 2},
A1 = {1, 3}. We obtain the following graph.

{0, 2} {1, 3}

{1}

{2} {3}{0}

A0 A13

0,2,4

1

0,2,4

1,3

0,4

3
1

2

0,4

1

2

3

0,4

1,3

2

0,4

2

1

3

Let us point out some properties of these graphs that will allow us to conclude
with Question 3.

Lemma 26. The graph G(σ) is algorithmically computable.

Proof. It is clear from Proposition 25 and the fact that the number of vertices is
bounded by 2d.

For a sequence z in AK we set A(z) = {zn : n ∈ K}, where K = N or Z. We
call it the alphabet of z.

Let m ≥ 0 and k be integers such that 0 ≤ k < hlm. We will denote by
(km, km−1, . . . , k1, k0) the expansion of k in base (lm, lm−1, . . . , l, 1), i.e. k = ∑

m
i=0 kil

i

with 0 ≤ km < h and 0 ≤ ki < l for 0 ≤ i < m.

Lemma 27. Let m ≥ 0 and k be integers such that 0 ≤ k < hlm. Let (km, km−1, . . . ,
k1, k0) be the expansion of k in base (lm, lm−1, . . . , l, 1). Then, the set A((yk+nhlm)n) is
the image under φ of the terminal edge of the admissible walk in the graph G(σ) starting
from the vertex Akm

with label (km−1, . . . , k1, k0), read from left to right.
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Proof. We proceed by induction on m. If m = 0, the statement is clear from the
definition of the Ai’s.

Suppose that the property holds for some integer m ≥ 0.
Let k be an integer such that 0 ≤ k < hlm+1 and (km+1, . . . , k1, k0) be its repre-

sentation in base (lm+1, lm, . . . , l, 1). Then, k+ nhlm+1 = k0 + l(km+1lm + kmlm−1 +
· · · + k1 + nhlm). Therefore, for all n, yk+nhlm+1 = φ(xk+nhlm+1) is the k0-th let-
ter of the word φ(σ(xkm+1lm+···+k1+nhlm)). By induction hypothesis, the alpha-
bet A((ykm+1 lm+···+k1+nhlm)n) is the image under φ of the terminal vertex of the
admissible walk starting from Akm+1

with label (km, . . . , k1). By construction of
the graph G(σ), the alphabet A((yk+nhlm+1)n) is the image under φ of the termi-
nal vertex of the admissible walk starting from Akm+1

with label (km , . . . k1, k0),
which achieves the proof of the claim.

Example 3. We consider the substitution σ defined in Example 1 above. Let
φ be the morphism defined by 0 → a, 1 → b, 2 → c and 3 → a, and y the image
of x under φ. We apply the morphism φ to each vertex of the graph G(σ), which
could be represented by the following labelling of the graph G(σ).

{a} {b, c}
1

0,2 0,2

1

Remark 28. As a consequence, the alphabet of any arithmetic subsequence of y
with common difference hlm, m ∈ N, is the image under φ of a vertex of the graph
G(σ). In particular, there exists a constant arithmetic subsequence (yk+nhlm)n

equal to a if and only if, the image under φ of the terminal edge of the unique
walk starting from vertex Am with label (km−1, . . . , k1, k0) is {a}.

Example 1 (continued). From Lemma 27, none of its four (one-sided) fixed
points admit a letter in arithmetic progression. In fact, the substitution being
primitive, it is sufficient to check this for just one of them.

Example 2 (continued). We observe that every letter of A appears in x in
arithmetic progression. In fact, the substitution σ being primitive and of constant
length, if there exists a letter that appears in arithmetic progression, then every
letter of A would occur in x in arithmetic progression. From Lemma 27 a period
for the letter 1 is 2 × 5 = 10. Thus, the essential period should be among 2, 5 or
10. It cannot be 2, else either A0 or A1 would be {1}. Moreover, from (6.1) and
(3.1) it is a multiple of h = 2, so the essential period for the letter 1 is equal to
10: more precisely, x1+10n = 1 for all n and this is the only constant arithmetic
subsequence with common difference 10 in x.

Example 3 (continued). The letter a occurs in y in arithmetic progression
with common difference 2. Notice that the letters b and c occur in y at the same
indices as 1 and 2 in x, thus they do not appear in arithmetic progression. As a
consequence, the sequence y has only one constant arithmetic subsequence with
an essential period: y2n = 0 for all n ∈ N.

Thus from Lemma 27 and the properties of the graph G(σ), we are able to
answer positively to Question 2 and Question 3 with the following proposition.
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Proposition 29. Let y ∈ BZ be a primitive automatic sequence, that is y = φ(x)
where σ is a primitive constant-length substitution, x ∈ AZ one of its admissible fixed
points and φ a coding. Then, ZP′(Y, S) = Per(y) is the set of integers hlm such that
φ(A((xk+nhlm)n)) is a singleton for some k with 0 ≤ k < hlm. Moreover, this set is
algorithmically computable.

The following proposition makes precise the positive answer to Question 2.

Proposition 30. The graph G(σ) satisfies the following properties.

1. The sequence y admits a constant arithmetic subsequence if, and only if, there exists
a vertex C of G(σ) whose image under φ is a singleton.

2. The sequence y is periodic if, and only if, every long enough walk in the graph G(σ)
ends in a vertex whose image under φ is a singleton.

Remark 31. The quantity b(σ) = minB∈V |B| is called the branching number
[Kam72]. The sequence x admits a constant arithmetic subsequence if and only if
b(σ) = 1.

6.5 More properties of the graph G(σ)

We continue with the notations and assumptions of the two previous sections.
We will now use the graph G(σ) to characterize the set of essential periods of the
letters (i.e. of [a] with a ∈ A).

For the sequel, we will call any vertex reachable from a given vertex a successor
of this vertex.

We need the following proposition.

Proposition 32. The graph G(σ) satisfies exactly one of the following properties.

1. It doesn’t contain any singleton.

2. Every long enough walk ends in a singleton.

3. There exists a cycle joining vertices of cardinality ≥ 2, with one having a singleton
in his successors.

Proof. Suppose that we are neither in Case (1) nor in Case (2). We will show that
Case (3) is satisfied.

By hypothesis, the graph G(σ) contains at least one singleton. Due to Remark
28, to this singleton corresponds a constant arithmetic subsequence of x, with
common difference hlm for some integer m. Moreover, there exist arbitrarily long
walks with vertices of cardinality greater or equal to 2. As the number of edges
is finite, there exists a cycle in these vertices.

Suppose by contradiction that the vertices of this cycle do not have any sin-
gleton in their successors. Pick C among these vertices. According to Lemma 27,
there exist two integers k and p such that C is the alphabet of the subsequence
(xk+nhlp)n∈N. Let (C, Ci), 0 ≤ i < l, be the l edges starting in C. Each Ci is the
alphabet of the subsequence (xi+kl+nhlp+1)n for 0 ≤ i < l. By a direct induction,
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the j-th successors of C contains the alphabets of each subsequence xi+kl j+nhlp+j

for 0 ≤ i < l j. None of them are constant because C has no singleton in its suc-
cessors. Then, the sequence x contain arbitrarily long subwords with no letter in
arithmetic progression. This contradicts the fact that there exist a constant arith-
metic subsequence with common difference hlm. Therefore, C has a singleton in
its successors and Property (3) holds.

For each of these cases, we now detail the consequences for arithmetic
progressions. Property (1) holds if, and only if, there is no constant arithmetic
subsequence in the sequence y (Proposition 30).

Remark 33. In the graph G(σ), each alphabet has a cardinality greater or equal
to each of its successors. In particular, every successor of a singleton is also a
singleton.

Proposition 34. Every long enough walk in the graph G(σ) ends in a singleton if, and
only if, the sequence x is periodic.

Proof. Suppose every long enough walk in the graph G(σ) ends in a singleton
The graph G(σ) contains at most 2d vertices (recall that d = cardA), thus every
path with length 2d leads to a singleton. As a consequence, each arithmetic subse-

quence with common difference hl2d
is constant. Then x is periodic and its period

is a divisor of hl2d
.

If x is a periodic sequence, its period is 1 or is a divisor of hlm for some m
(Lemma 6 and Theorem 14). Then each subsequence with period hlm is constant
and every walk of length greater or equal than m ends in a singleton.

From G(σ) we define a forest F(σ), that is a finite union of (infinite) trees
T1, . . . , Th. Let i ∈ {0, 1, . . . , h − 1}. The root of the tree Ti is (Ai, 0). The vertices
of Ti are divided into floors (0th floor, 1st floor, ...). The 0th floor is {(Ai, 0)}.
The nth floor consists of a finite collection of elements (B, n) where (B′,B) is an
edge of G(σ) with (B′, n − 1) belonging to the (n − 1)th floor, and, edges are the
pairs ((B′, n − 1), (B, n)). Roughly speaking in F(σ) each vertex has the same
successors as in graph G(σ). Admissible walks in F(σ) start from some Ai. We
denote the number of vertices (C, m), where C is a singleton, by sm .

Let us make an observation we will use in the proof of the next proposi-
tion. Each such vertex (C, m) corresponds to exactly one constant arithmetic
subsequences of x with common difference hlm (Proposition 29) and produces
l distinct constant arithmetic subsequences of x with common difference hlm+1.
As a consequence, one has sm+1 > lsm if, and only if, the sequence x has an essen-
tial period, for some letter, greater than hlm and dividing hlm+1. In the converse
case, we have sm+1 = lsm.

Proposition 35. There exists in the graph G(σ) a cycle joining vertices of cardinality
greater or equal to 2, with one having a singleton in his successors, if, and only if, the
essential periods for letters of x are unbounded.

Proof. Suppose there exists in G(σ) a cycle joining vertices of cardinality ≥ 2 with
one having a singleton in his successors. Let B be a vertex, i.e. an alphabet, of
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this cycle. We will prove that, infinitely often, sm+1 > lsm. In fact only one such
m would be sufficient from the observation made above.

Let N be the length of a shortest path joining B to a singleton {a}. As B
belongs to a cycle, it will appear infinitely often in the forest F(σ). We denote
(bk)k∈N the levels (in increasing order) containing B. Then, each level bk + N
contains the singleton {a} as a direct successor of an alphabet with cardinality
≥ 2. The number of singletons at level bk + N is sbk+N > sbk+N−1l (we have
l successors of the singletons of level bk + N − 1 and at least the singleton {a}).
Therefore, for each k ∈ N, x has a constant arithmetic subsequence with common
difference greater than hlbk+N−1 and dividing hlbk+N.

Suppose that the set of essential periods for letters is unbounded. For each
essential period pk (numbered in increasing order), let nk be the smallest integer
such that pk divides hlnk . Of course, the sequence (nk)k goes to infinity with (pk)k.
Thus, this essential period corresponds to a singleton in the level nk that is the
direct descendant of some (Bk, k) with Bk having a cardinality greater or equal to
2. As the number of distinct alphabets in the forest is finite, there exists some k
such that Bk appears in this forest an infinite number of times. Thus, it belongs
to a cycle of G(σ) or is the descendant of such a cycle, whose elements have
cardinality greater or equal than the cardinality of Bk. This ends the proof.

Example 4. Let us consider the substitution: 0 7→ 01, 1 7→ 20, 2 7→ 13, 3 7→ 12.
It has length 2 and height 3, which lead to the alphabets: A0 = {0}, A1 = {1}
and A2 = {2, 3}. We obtain the following graph.

{1}{0} {2, 3}

{2} {3}

A0 A1
A20

1
1

0

0
1

0

1

0

1

We are in Case (3) of Proposition 32, thus due to Proposition 35, the essential
periods are unbounded. This can also be seen on the following forest.

T1 T2 T3

({0}, 0)

({0}, 1)

({0}, 2) ({1}, 2)

({1}, 1)

({2}, 2) ({0}, 2)

({1}, 0)

({2}, 1)

({1}, 2) ({3}, 2)

({0}, 1)

({0}, 2) ({1}, 2)

({2, 3}, 0)

({1}, 1)

({2}, 2) ({0}, 2)

({2, 3}, 1)

({1}, 2)({2, 3}, 2)

0

0 1

1

0 1

0

0 1

1

0 1

0

0 1

1

0 1
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We easily see that a new constant arithmetic progression appears at each level
as a successor of vertex ({2, 3}, 2). The length of σ is a prime number, thus the set
of essential periods is exactly {3 × 2n : n ∈ N}.

6.6 Comments for words occurring in arithmetic progressions

In this work we concentrated on letters occurring periodically in substitutive
sequences. The same questions could be asked for words. Using the substitu-
tions on the words of length n (see [Que10]) it is clear that the main results we
obtained, i.e. Theorem 19 and Propositions 29 and 30, can be applied to words.
This is left as an exercise.

7 Questions

We leave open our three questions for the substitutive sequences (that are not
uniformly recurrent). For example, consider the subshift (X, S) generated by the
primitive substitution 0 7→ 0120, 1 7→ 121, 2 7→ 200. Let x be an admissible fixed
point. One has P(X, S) = {2m : m ≥ 0} . By computer checking we did not find
constant arithmetic subsequence for x with a period less than 220 but we do not
know whether it exists for greater periods.
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Spécialisés [Specialized Courses]. Société Mathématique de France,
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