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Abstract

In this paper, we study new contractive conditions which are strong
enough to generate fixed points but which do not force the map to be contin-
uous at fixed points. In this context, we give new results on the fixed-circle
problem. We investigate some applications to complex-valued metric spaces
and to discontinuous activation functions in real and complex valued neural
networks.

1 Introduction

The fixed-point theory is an attractive area in mathematics. This theory has
been extensively studied by many aspects (see [7, 8, 9, 17, 18] and the references
therein). There are some open problems in this area. One of these problems is the
following open problem raised by B. E. Rhoades in [18].

Open Problem D. What are the contractive conditions which are strong enough
to generate a fixed point but which do not force the map to be continuous at fixed
point?

Then, in [15], R. P. Pant obtained a solution of this question using the number

m(u, v) = max {d(u, Tu), d(v, Tv)} ,

on a complete metric space. Recently, some new solutions have been investigated
using various approaches. For example, Bisht and Pant studied on this Open
Problem D using the numbers

M(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

d(u, Tv) + d(v, Tu)

2

}
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and

M∗(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

α [d(u, Tv) + d(v, Tu)]

2

}
, α ∈ [0, 1)

on a complete metric space (see [2, 3]). Some recent studies about this question on
a metric space can be found in [4, 5, 14, 16, 20, 24]. On the other hand, some dis-
continuity results were applied to the fixed-circle problem and to discontinuous
activation functions (see [13, 14, 20]).

Let (X, d) be a metric space and T : X → X be a self-mapping. In this paper,
we consider the following number defined as

N(u, v) = max





d(u, v), d(u, Tu), d(v, Tv), d(v,Tv)[1+d(u,Tu)]
1+d(u,v)

,
d(u,Tu)[1+d(v,Tv)]

1+d(Tu,Tv)



 , (1.1)

for all u, v ∈ X and our aim is to obtain new solutions of the Open Problem D
using the classical technique. We prove some fixed-circle theorems related to
discontinuity points.

Our paper is organized as follows: In Section 2, we give a fixed-point the-
orem using the number N(u, v) and some related results on a complete metric
space. In Section 3, we obtain a new solution of the Open Problem D on a complex
valued metric space. In Section 4, we prove some fixed-circle theorems on metric
spaces. In Section 5, we investigate some applications to discontinuous activation
functions in real and complex valued neural networks.

2 Some New Results on Discontinuity at Fixed Point

At first, we give the following fixed-point theorem.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be a self-mapping
satisfying the following conditions:

(1) There exists a function φ : R
+ → R

+ such that φ(t) < t for each t > 0 and

d(Tu, Tv) ≤ φ(N(u, v)).

(2) For a given ε > 0, there exists a δ(ε) > 0 such that ε < N(u, v) < ε + δ implies
d(Tu, Tv) ≤ ε.

Then T has a unique fixed point u∗ ∈ X and Tnu → u∗ for each u ∈ X. Also, T is
discontinuous at u∗ if and only if lim

u→u∗N(u, u∗) 6= 0.

Proof. Let u0 ∈ X, Tu0 6= u0 and the sequence {un} be defined as Tun = un+1 for
all n ∈ N ∪ {0}. Using the condition (1), we have

d(un, un+1) = d(Tun−1, Tun) ≤ φ(N(un−1, un)) < N(un−1, un)

= max

{
d(un−1, un), d(un−1, Tun−1), d(un, Tun),

d(un,Tun)[1+d(un−1,Tun−1)]
1+d(un−1,un)

,
d(un−1,Tun−1)[1+d(un,Tun)]

1+d(Tun−1,Tun)

}

= max

{
d(un−1, un), d(un−1, un), d(un, un+1),

d(un,un+1)[1+d(un−1,un)]
1+d(un−1,un)

,
d(un−1,un)[1+d(un,un+1)]

1+d(un,un+1)

}

= max {d(un−1, un), d(un, un+1)} . (2.1)
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Assume that d(un−1, un) < d(un, un+1). Then using the inequality (2.1), we get

d(un, un+1) < d(un, un+1),

which is a contradiction. So it should be d(un, un+1) < d(un−1, un). If we put
d(un, un+1) = sn then from the inequality (2.1), we have

sn < sn−1, (2.2)

that is, sn is a strictly decreasing sequence of positive real numbers and so the
sequence sn tends to a limit s ≥ 0. Suppose that s > 0. There exists a positive
integer k ∈ N such that n ≥ k implies

s < sn < s + δ(s). (2.3)

Using the condition (2) and the inequality (2.2), we get

d(Tun−1, Tun) = d(un, un+1) = sn < s, (2.4)

for n ≥ k. The inequality (2.4) contradicts to the inequality (2.3). Then it should
be s = 0.

Now we show that {un} is a Cauchy sequence. Let us fix an ε > 0. Without
loss of generality, we can assume that δ(ε) < ε. There exists k ∈ N such that
δ2

< ε for n ≥ k since sn → 0. Following Jachymski (see [8, 9] for more details),
using the mathematical induction, we prove

d(uk, uk+n) < ε + δ, (2.5)

for any n ∈ N. The inequality (2.5) holds for n = 1 since

d(uk, uk+1) = sk < δ < ε + δ.

Assume that the inequality (2.5) is true for some n. We prove it for n + 1. Using
the triangle inequality, we obtain

d(uk , uk+n+1) ≤ d(uk , uk+1) + d(uk+1, uk+n+1).

It suffices to show d(uk+1, uk+n+1) ≤ ε. To do this, we prove N(uk , uk+n) ≤ ε + δ,
where

N(uk , uk+n) =

{
d(uk, uk+n), d(uk , Tuk), d(uk+n, Tuk+n),

d(uk+n,Tuk+n)[1+d(uk,Tuk)]
1+d(uk,uk+n)

,
d(uk,Tuk)[1+d(uk+n,Tuk+n)]

1+d(Tuk,Tuk+n)

}
. (2.6)

Using the mathematical induction hypothesis, we find

d(uk, uk+n) < ε + δ,

d(uk , Tuk) < δ < ε + δ,

d(uk+n, Tuk+n) < δ < ε + δ,
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d(uk+n, Tuk+n)[1 + d(uk, Tuk)]

1 + d(uk , uk+n)
< δ + δ2

< ε + δ,

d(uk , Tuk)[1 + d(uk+n, Tuk+n)]

1 + d(Tuk , Tuk+n)
< δ + δ2

< ε + δ. (2.7)

Using the conditions (2.6) and (2.7), we have

N(uk , uk+n) < ε + δ.

From the condition (2), we obtain

d(Tuk , Tuk+n) = d(uk+1, uk+n+1) ≤ ε.

Therefore, the inequality (2.5) implies that {un} is Cauchy. Since (X, d) is a com-
plete metric space, there exists a point u∗ ∈ X such that un → u∗ as n → ∞. Also
we get Tun → u∗.

Now we show that Tu∗ = u∗. On the contrary, suppose that u∗ is not a fixed
point of T, that is, Tu∗ 6= u∗. Then using the condition (1), we get

d(Tu∗, Tun) ≤ φ(N(u∗ , un)) < N(u∗, un)

= max

{
d(u∗, un), d(u∗, Tu∗), d(un, un+1),

d(un,un+1)[1+d(u∗,Tu∗)]
1+d(u∗,un)

,
d(u∗,Tu∗)[1+d(un,un+1)]

1+d(Tu∗,un+1)

}

and so taking limit for n → ∞ we have

d(Tu∗, u∗) <
d(u∗, Tu∗)

1 + d(Tu∗, u∗)
,

which is a contradiction. Thus u∗ is a fixed point of T. We prove that the fixed
point u∗ is unique. Let v∗ be another fixed point of T such that u∗ 6= v∗. By the
condition (1), we find

d(Tu∗, Tv∗) = d(u∗, v∗) ≤ φ(N(u∗ , v∗)) < N(u∗, v∗)

= max

{
d(u∗, v∗), d(u∗, Tu∗), d(v∗, Tv∗),

d(v∗,Tv∗)[1+d(u∗,Tu∗)]
1+d(u∗,v∗) , d(u∗,Tu∗)[1+d(v∗,Tv∗)]

1+d(Tu∗,Tv∗)

}

= d(u∗, v∗),

which is a contradiction. Hence u∗ is the unique fixed point of T.
Finally, we prove that T is discontinuous at u∗ if and only if lim

u→u∗N(u, u∗) 6= 0.

To do this, we show that T is continuous at u∗ if and only if lim
u→u∗N(u, u∗) = 0. Let

T be continuous at the fixed point u∗ and un → u∗. Then Tun → Tu∗ = u∗ and

d(un, Tun) ≤ d(un, u∗) + d(u∗, Tun) → 0.

Hence we get lim
n

N(un, u∗) = 0. On the other hand, if lim
n

N(un, u∗) = 0 then

d(un, Tun) → 0 as un → u∗. This implies Tun → u∗ = Tu∗, that is, T is continuous
at u∗.
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Remark 2.1. (1) In Theorem 2.1, in the cases where the condition (2) is satisfied, we
obtain d(Tu, Tv) < N(u, v) where N(u, v) > 0. If N(u, v) = 0 then d(Tu, Tv) = 0
and so the inequality d(Tu, Tv) ≤ ε holds for any u, v ∈ X with ε < N(u, v) < ε + δ.
This shows that the conditions (1) and (2) are not independent.

(2) It can be also given new fixed-point results on discontinuity at the fixed point
using the continuity of the self-mapping T2 (resp. the continuity of the self-mapping Tp

or the orbitally continuity of the self-mapping T) and the number N(u, v) (see [2, 3]).

As the results of Theorem 2.1, we obtain the following corollaries.

Corollary 2.1. Let (X, d) be a complete metric space and T : X → X be a self-mapping
satisfying the following conditions:

(1) d(Tu, Tv) < N(u, v) for any u, v ∈ X with N(u, v) > 0,
(2) For a given ε > 0, there exists a δ(ε) > 0 such that ε < N(u, v) < ε + δ implies

d(Tu, Tv) ≤ ε.
Then T has a unique fixed point u∗ ∈ X and Tnu → u∗ for each u ∈ X. Also, T is

discontinuous at u∗ if and only if lim
u→u∗N(u, u∗) 6= 0.

Corollary 2.2. [20] Let (X, d) be a complete metric space and T : X → X be a self-
mapping satisfying the following conditions:

(1) There exists a function φ : R+ → R+ such that φ(d(u, v)) < d(u, v) and
d(Tu, Tv) ≤ φ(d(u, v)).

(2) For a given ε > 0, there exists a δ(ε) > 0 such that ε < t < ε + δ implies
φ(t) ≤ ε for any t > 0.

Then T has a unique fixed point u∗ ∈ X and Tnu → u∗ for each u ∈ X.

We give the following illustrative example of Theorem 2.1.

Example 2.1. Let X = [0, 2] be the metric space with the usual metric d(u, v) = |u − v|.
Let us define the self-mapping T : X → X be defined as

Tu =

{
1 if u ≤ 1
0 if u > 1

,

for all u ∈ X. Then T satisfies the conditions of Theorem 2.1 and has a unique fixed point
u = 1. Indeed, we have

d(Tu, Tv) = 0 and 0 < N(u, v) ≤ 2 when u, v ≤ 1,

d(Tu, Tv) = 0 and 2 < N(u, v) ≤ 6 when u, v > 1,

d(Tu, Tv) = 1 and 1 < N(u, v) ≤ 2 when u ≤ 1, v > 1

and

d(Tu, Tv) = 1 and 1 < N(u, v) ≤ 2 when u > 1, v ≥ 1.

Then T satisfies the condition (1) given in Theorem 2.1 with

φ(t) =

{
1 if t > 1
t
2 if t ≤ 1
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and also T satisfies the condition (2) given in Theorem 2.1 with

δ(ε) =

{
5 if ε ≥ 1

5 − ε if ε < 1
.

It can be easily seen that lim
u→1

N(u, 1) 6= 0 and so T is discontinuous at the fixed point

u = 1.

Now we see that the power contraction of the type N(u, v) allows the possi-
bility of discontinuity at the fixed point with the number

N∗(u, v) = max

{
d(u, v), d(u, Tmu), d(v, Tmv),

d(v,Tmv)[1+d(u,Tmu)]
1+d(u,v)

,
d(u,Tmu)[1+d(v,Tmv)]

1+d(Tmu,Tmv)

}
.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X be a self-mapping
satisfying the following conditions:

(1) There exists a function φ : R+ → R+ such that φ(t) < t for each t > 0 and

d(Tmu, Tmv) ≤ φ(N∗(u, v)).

(2) For a given ε > 0, there exists a δ(ε) > 0 such that ε < N∗(u, v) < ε + δ
implies d(Tmu, Tmv) ≤ ε.

Then T has a unique fixed point u∗ ∈ X. Also, T is discontinuous at u∗ if and only if
lim

u→u∗
N∗(u, u∗) 6= 0.

Proof. Using Theorem 2.1, we see that the function Tm has a unique fixed point
u∗, that is, Tmu∗ = u∗. Hence we get

Tu∗ = TTmu∗ = TmTu∗

and so Tu∗ is a fixed point of Tm. From the uniqueness of the fixed point, we
obtain Tu∗ = u∗. Consequently, T has a unique fixed point.

3 Some New Results on Discontinuity at Fixed Point on Com-

plex Valued Metric Spaces

In this section, we give a new solution of the Open Question D on a complex
valued metric space. At first, we recall the following background.

Let C be the set of all complex numbers and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 ⇔ Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
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It is written z1 � z2 if z1 6= z2 and one of (i), (ii) and (iii) is satisfied and it is
written z1 ≺ z2 if only (iii) is satisfied. Also,

0 - z1 � z2 =⇒ |z1| < |z2| ,

z1 - z2, z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 3.1. [1] Let X be a nonempty set and dC : X × X → C a mapping satisfying
the following conditions:

(1) 0 - dC(u, v) for all u, v ∈ X and dC(u, v) = 0 if and only if u = v,
(2) dC(u, v) = dC(v, u) for all u, v ∈ X,
(3) dC(u, v) - dC(u, w) + dC(w, v) for all u, v, w ∈ X.
Then dC is called a complex valued metric on X and (X, dC) is called a complex valued

metric space.

Definition 3.2. [1] Let (X, dC) be a complex valued metric space, {un} be a sequence in
X and u ∈ X.

(1) If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n > n0,
dC(un, u) ≺ c, then {un} is said to be convergent and {un} converges to u. It is denoted
by lim

n
un = u or un → u as n → ∞.

(2) If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n > n0,
dC(un, un+m) ≺ c, then {un} is called a Cauchy sequence in (X, dC).

(3) If every Cauchy sequence is convergent in (X, dC) then (X, dC) is called a
complete complex valued metric space.

Lemma 3.1. [1] Let (X, dC) be a complex valued metric space and {un} be a sequence
in X.

(1) {un} converges to u if and only if |dC(un, u)| → 0 as n → ∞.
(2) {un} is a Cauchy sequence if and only if |dC(un, un+m)| → 0 as n → ∞.

Definition 3.3. [21] The “max” function is defined for the partial order relation - as
follow:

(1) max {z1, z2} = z2 ⇔ z1 - z2.
(2) z1 - max {z2, z3} ⇒ z1 - z2 or z1 - z3.
(3) max {z1, z2} = z2 ⇔ z1 - z2 or |z1| < |z2|.

Lemma 3.2. [21] Let z1, z2, z3, . . . ∈ C and the partial order relation - be defined on C.
Then the following statements are satisfied:

(1) If z1 - max {z2, z3} then z1 - z2 if z3 - z2,
(2) If z1 - max {z2, z3, z4} then z1 - z2 if max {z3, z4} - z2,
(3) If z1 - max {z2, z3, z4, z5} then z1 - z2 if max {z3, z4, z5} - z2, and so on.

Now we give the following theorem.

Theorem 3.1. Let (X, dC) be a complete complex valued metric space and T : X → X
be a self-mapping satisfying the following conditions:

(1) There exists a function χ : C → C such that χ(t) ≺ t for each 0 ≺ t and

dC(Tu, Tv) - χ(NC(u, v)),
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where

NC(u, v) = max

{
dC(u, v), dC(u, Tu), dC(v, Tv),

dC(v,Tv)[1+dC(u,Tu)]
1+dC(u,v)

,
dC(u,Tu)[1+dC(v,Tv)]

1+dC(Tu,Tv)

}
,

for all u, v ∈ X.
(2) For a given 0 ≺ ε, there exists a 0 ≺ δ(ε) such that ε ≺ NC(u, v) ≺ ε + δ

implies dC(Tu, Tv) - ε.
Then T has a unique fixed point u∗ ∈ X and |dC(T

nu, u∗)| → 0 for each u ∈ X.
Also, T is discontinuous at u∗ if and only if lim

u→u∗ |NC(u, u∗)| 6= 0.

Proof. Let u0 ∈ X, Tu0 6= u0 and the sequence {un} be defined as Tun = un+1 for
all n ∈ N ∪ {0}. Using the condition (1), we have

dC(un, un+1) = dC(Tun−1, Tun) - χ(NC(un−1, un)) ≺ NC(un−1, un)

= max

{
dC(un−1, un), dC(un−1, Tun−1), dC(un, Tun),

dC(un,Tun)[1+dC(un−1,Tun−1)]
1+dC(un−1,un)

,
dC(un−1,Tun−1)[1+dC(un,Tun)]

1+dC(Tun−1,Tun)

}

= max

{
dC(un−1, un), dC(un−1, un), dC(un, un+1),

dC(un,un+1)[1+dC(un−1,un)]
1+dC(un−1,un)

,
dC(un−1,un)[1+dC(un,un+1)]

1+dC(un,un+1)

}

= max {dC(un−1, un), dC(un, un+1)} . (3.1)

Assume that dC(un−1, un) ≺ dC(un, un+1). Then using the inequality (3.1) and
Definition 3.3, we have

dC(un, un+1) ≺ dC(un, un+1)

and so
|dC(un, un+1)| < |dC(un, un+1)| ,

which is a contradiction. Hence it should be dC(un, un+1) ≺ dC(un−1, un). If we
put dC(un, un+1) = cn then from the inequality (3.1), we get

cn ≺ cn−1, (3.2)

that is,
|cn| < |cn−1| .

So the sequence cn tends to a limit 0 - c. Suppose that 0 ≺ c. There exists a
positive integer k ∈ N such that n ≥ k implies

c ≺ cn ≺ c + δ(c). (3.3)

Using the condition (2) and the inequality (3.2), we get

dC(Tun−1, Tun) = dC(un, un+1) = cn ≺ c, (3.4)

for n ≥ k. The inequality (3.4) contradicts to the inequality (3.3). Then it should
be c = 0.

Now we show that {un} is a Cauchy sequence. Let us fix an 0 ≺ ε. Without
loss of generality, we can assume that δ(ε) ≺ ε. There exists k ∈ N such that

dC(un, un+1) = cn ≺ δ
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and δ2
< ε for n ≥ k since cn → 0. Following Jachymski (see [8, 9] for more

details), using the mathematical induction, we prove

dC(uk, uk+n) ≺ ε + δ, (3.5)

for any n ∈ N. The inequality (3.5) holds for n = 1 since

dC(uk, uk+1) = ck ≺ δ ≺ ε + δ.

Assume that the inequality (3.5) is true for some n. We prove it for n + 1. Using
the triangle inequality for the complex valued metric, we obtain

dC(uk, uk+n+1) - dC(uk, uk+1) + dC(uk+1, uk+n+1).

It suffices to show dC(uk+1, uk+n+1) - ε. To do this, we prove NC(uk, uk+n) -
ε + δ, where

NC(uk, uk+n) =

{
dC(uk, uk+n), dC(uk, Tuk), dC(uk+n, Tuk+n),

dC(uk+n,Tuk+n)[1+dC(uk,Tuk)]
1+dC(uk,uk+n)

,
dC(uk,Tuk)[1+dC(uk+n,Tuk+n)]

1+dC(Tuk,Tuk+n)

}
. (3.6)

Using the mathematical induction hypothesis, we find

dC(uk, uk+n) ≺ ε + δ,

dC(uk, Tuk) ≺ δ ≺ ε + δ,

dC(uk+n, Tuk+n) ≺ δ ≺ ε + δ,

dC(uk+n, Tuk+n)[1 + dC(uk, Tuk)]

1 + dC(uk, uk+n)
≺ δ + δ2 ≺ ε + δ,

dC(uk, Tuk)[1 + dC(uk+n, Tuk+n)]

1 + dC(Tuk, Tuk+n)
≺ δ + δ2 ≺ ε + δ. (3.7)

Using the conditions (3.6) and (3.7), we have

NC(uk, uk+n) ≺ ε + δ.

From the condition (2), we obtain

dC(Tuk, Tuk+n) = dC(uk+1, uk+n+1) - ε.

Therefore, the inequality (3.5) implies that {un} is Cauchy. Since (X, dC) is a
complete complex valued metric space, there exists a point u∗ ∈ X such that
|dC(un, u∗)| → 0 as n → ∞. Also we get |dC(Tun, u∗)| → 0.

Now we show that Tu∗ = u∗. On the contrary, suppose that u∗ is not a fixed
point of T, that is, Tu∗ 6= u∗. Then using the condition (1), we get

dC(Tu∗, Tun) - χ(NC(u
∗, un)) ≺ NC(u

∗, un)

= max

{
dC(u

∗, un), dC(u
∗, Tu∗), dC(un, un+1),

dC(un,un+1)[1+dC(u
∗,Tu∗)]

1+dC(u∗,un)
,

dC(u
∗,Tu∗)[1+dC(un,un+1)]
1+dC(Tu∗,un+1)

}
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and so taking limit for n → ∞ we have

dC(Tu∗, u∗) ≺ dC(u
∗, Tu∗)

1 + dC(Tu∗, u∗)
,

that is

|dC(Tu∗, u∗)| < |dC(u
∗, Tu∗)|

|1 + dC(Tu∗, u∗)| ,

which is a contradiction. Thus u∗ is a fixed point of T. We prove that the fixed
point u∗ is unique. Let v∗ be another fixed point of T such that u∗ 6= v∗. By the
condition (1), we find

dC(Tu∗, Tv∗) = dC(u
∗, v∗) - χ(NC(u

∗, v∗)) ≺ NC(u
∗, v∗)

= max

{
dC(u

∗, v∗), dC(u
∗, Tu∗), dC(v

∗, Tv∗),
dC(v

∗,Tv∗)[1+dC(u
∗,Tu∗)]

1+dC(u∗,v∗) ,
dC(u

∗,Tu∗)[1+dC(v
∗,Tv∗)]

1+dC(Tu∗,Tv∗)

}

= dC(u
∗, v∗),

which is a contradiction. Hence u∗ is the unique fixed point of T.
Finally, we prove that T is discontinuous at u∗ if and only if

lim
u→u∗ |NC(u, u∗)| 6= 0. To do this, we show that T is continuous at u∗ if and only

if lim
u→u∗ |NC(u, u∗)| = 0. Let T be continuous at the fixed point u∗ and un → u∗.

Then Tun → Tu∗ = u∗ and

dC(un, Tun) - dC(un, u∗) + dC(u
∗, Tun),

that is
|dC(un, Tun)| ≤ |dC(un, u∗)|+ |dC(u

∗, Tun)| → 0.

Hence we get lim
n

|NC(un, u∗)| = 0. On the other hand, if lim
n

|NC(un, u∗)| = 0

then |dC(un, Tun)| → 0 as un → u∗. This implies Tun → u∗ = Tu∗, that is, T is
continuous at u∗.

Now we give the following example.

Example 3.1. If we consider the self-mapping T : X → X defined in Example 2.1, then
T satisfies the conditions of Theorem 3.1. Consequently, T has a unique fixed point u = 1
and T discontinuous at the fixed point u = 1 since lim

u→1
|NC(u, 1)| 6= 0.

By the similar arguments used in the proof of Theorem 2.2 and the number

N∗
C(u, v) = max

{
dC(u, v), dC(u, Tmu), dC(v, Tmv),

dC(v,Tmv)[1+dC(u,Tmu)]
1+dC(u,v)

,
dC(u,Tmu)[1+dC(v,Tmv)]

1+dC(Tmu,Tmv)

}
,

we obtain the following theorem.

Theorem 3.2. Let (X, dC) be a complete complex valued metric space and T : X → X a
self-mapping satisfying the following conditions:
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(1) There exists a function χ : C → C such that χ(t) ≺ t for each 0 ≺ t and

dC(T
mu, Tmv) - χ(N∗

C(u, v)).

(2) For a given 0 ≺ ε, there exists a 0 ≺ δ(ε) such that ε ≺ N∗
C(u, v) ≺ ε + δ

implies dC(T
mu, Tmv) - ε.

Then T has a unique fixed point u∗ ∈ X. Also, T is discontinuous at u∗ if and only if
lim

u→u∗

∣∣N∗
C(u, u∗)

∣∣ 6= 0.

We note that every complex valued metric space (X, dC) is metrizable by the
real valued metric defined as d∗ (u, v) = max {Re(dC (u, v)), Im(dC (u, v))} such
that the metrics dC and d∗ induce the same topology on X (see [19] for the neces-
sary background). However, the classes of contractive mappings with respect to
two metrics need not to be same. On the other hand, complex valued functions
have many applications in various areas such as activation functions in neural
networks, signal analysis, control theory, geometry, fractals etc.

4 Some Fixed-Circle Results using the number N(u, v)

In recent years, the fixed-circle problem has been considered as a new direction
of extension of the fixed-point results (see [13, 14]). In this section, we obtain new
fixed-circle results using the number N(u, v). At first, we recall some necessary
notions.

Let (X, d) be a metric space. Then a circle and a disc are defined on a metric
space as follows, respectively:

Cu0,r = {u ∈ X : d(u, u0) = r}

and

Du0,r = {u ∈ X : d(u, u0) ≤ r} .

Definition 4.1. [13] Let (X, d) be a metric space, Cu0,r be a circle and T : X → X be
a self-mapping. If Tu = u for every u ∈ Cu0,r then the circle Cu0,r is called as the fixed
circle of T.

Definition 4.2. [23] Let F be the family of all functions F : (0, ∞) → R such that
(F1) F is strictly increasing,
(F2) For each sequence {αn} in (0, ∞) the following holds

lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

Some functions satisfying the conditions (F1), (F2) and (F3) of Definition 4.2
are F(x) = ln(x), F(x) = ln(x) + x, F(x) = − 1√

x
and F(x) = ln(x2 + x) (see [23]).

Now we define a new type contraction which generates fixed circles.
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Definition 4.3. Let (X, d) be a metric space and N(u, v) be defined as in (1.1). A self-
mapping T on X is said to be FC−Nu0

-contraction on X if there exist F ∈ F, t > 0 and

u0 ∈ X such that for all u ∈ X the following holds:

d(Tu, u) > 0 =⇒ t + F(d(Tu, u)) ≤ F(N(u, u0)).

Using these types contractions, we prove the following fixed-circle theorem.

Theorem 4.1. Let (X, d) be a metric space, T be an FC−Nu0
-contractive self-mapping

with u0 ∈ X and r = inf {d(Tu, u) : Tu 6= u}. If Tu0 = u0 then Cu0,r is a fixed circle of
T.

Proof. Let u ∈ Cu0,r. Assume that Tu 6= u. By the definition of r, we have
d(Tu, u) ≥ r. Then using the FC−Nu0

-contractive property, the hypothesis

Tu0 = u0 and the fact that F is increasing, we have

F(r) ≤ F(d(Tu, u)) ≤ F(N(u, u0))− t < F(N(u, u0))

= F

(
max

{
d(u, u0), d(u, Tu), d(u0 , Tu0)

d(u0,Tu0)[1+d(u,Tu)]
1+d(u,u0)

,
d(u,Tu)[1+d(u0,Tu0)]

1+d(Tu,Tu0)

})
(4.1)

= F

(
max

{
r, d(u, Tu), 0, 0,

d(u, Tu)

1 + d(Tu, u0)

})

= F(d(u, Tu)),

which is a contradiction. Consequently, it should be Tu = u and Cu0,r is a fixed
circle of T.

Proposition 4.1. Let (X, d) be a metric space, T be an FC−Nu0
-contractive self-mapping

with u0 ∈ X and r = inf {d(Tu, u) : Tu 6= u}. If Tu0 = u0 then T fixes every circle
Cu0,ρ with ρ < r.

Proof. Let u ∈ Cu0,ρ and d(Tu, u) > 0. By the FC−Nu0
-contractive property, the

hypothesis Tu0 = u0 and the fact that F is increasing, we have

F(d(Tu, u)) ≤ F(N(u, u0))− t < F(N(u, u0))

= F

(
max

{
ρ, d(u, Tu), 0, 0,

d(u, Tu)

1 + d(Tu, u0)

})
(4.2)

= F(d(u, Tu)),

which is a contradiction since d(u, Tu) ≥ r > ρ. Consequently, it should be
Tu = u and T fixes every circle Cu0,ρ with ρ < r.

As an immediate result of Theorem 4.1 and Proposition 4.1, we obtain the
following corollary.

Corollary 4.1. Let (X, d) be a metric space, T be an FC−Nu0
-contractive self-mapping

with u0 ∈ X and r = inf {d(Tu, u) : Tu 6= u}. If Tu0 = u0 then T fixes the disc Du0,r.

Proof. It follows by Theorem 4.1 and Proposition 4.1.
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In the following example we see that the converse statement of Theorem 4.1
is not always true.

Example 4.1. Let X = R be the metric space with the usual metric and the self-mapping
T : X → X be defined as

Tu =

{
u if |u − 3| ≤ r
3 if |u − 3| > r

,

for all u ∈ X with any r > 0. Then T is not an FC−Nu0
-contractive self-mapping for the

point u0 = 3 but T fixes every circle C3,ρ where ρ ≤ r.

We give the following example.

Example 4.2. Let X = R be the metric space with the usual metric. Let us define the
self-mapping T : R → R as

Tu =

{
u if |u + 1| < 2

u + 1
2 if |u + 1| ≥ 2

,

for all u ∈ R. The self-mapping T is an FC−Nu0
-contractive self-mapping with F = ln u,

t = ln 4 and u0 = −1. Indeed, we get

d(Tu, u) =

∣∣∣∣u +
1

2
− u

∣∣∣∣ =
1

2
6= 0,

for all u ∈ R such that |u + 1| ≥ 2. Then we have

ln 4 + ln

(
1

2

)
≤ ln (|u + 1|)

= ln


max





|u + 1| , 1
2 , 0,

|−1+1|[1+|u−u− 1
2 |]

1+|u+1| ,
|u−u− 1

2 |[1+|−1+1|]
1+|u+ 1

2+1|








= ln (N (u,−1))

=⇒ t + F(d(Tu, u)) ≤ F (N (u,−1)) .

Clearly, we have

r = min {d(Tu, u) : Tu 6= u} =
1

2

and the circle C−1, 1
2
= {− 3

2 ,− 1
2} is a fixed circle of T.

Now we construct a new technique to obtain new fixed-circle results. We give
the following definition.

Definition 4.4. Let (X, d) be a metric space and T : X → X be a self-mapping. Then T
is called Nu0-type contraction if there exists an u0 ∈ X and a function φ : R+ → R+

such that φ(t) < t for each t > 0 satisfying

d(Tu, u) ≤ φ(N(u, u0)),

for all u ∈ X.
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Using the Nu0-type contractive property, we get the following fixed-circle
theorem.

Theorem 4.2. Let (X, d) be a metric space, T : X → X be a self-mapping and
r = inf {d(Tu, u) : Tu 6= u}. If T is an Nu0-type contraction with u0 ∈ X and Tu0 = u0

then T fixes the circle Cu0,r.

Proof. Let u ∈ Cu0,r. Suppose that Tu 6= u. Using the Nu0-type contractive condi-
tion with Tu0 = u0, we get

d(Tu, u) ≤ φ(N(u, u0)) < N(u, u0)

= max

{
r, d(u, Tu), 0, 0,

d(u, Tu)

1 + d(Tu, u0)

}
(4.3)

= d(u, Tu),

which is a contradiction since r = inf {d(Tu, u) : Tu 6= u}. Consequently, it should
be Tu = u and Cu0,r is a fixed circle of T.

As a result of Theorem 4.2, we obtain the following corollary.

Corollary 4.2. Let (X, d) be a metric space, T be an Nu0-type contraction with u0 ∈ X
and r = inf {d(Tu, u) : Tu 6= u}. If Tu0 = u0 then T fixes the disc Du0,r.

Proof. Using similar arguments as used in the proofs of Theorem 4.2 and Propo-
sition 4.1, it can be easily checked that T fixes the disc Du0,r.

We give the following example.

Example 4.3. Let X = C be the metric space with the usual metric. Let us define the
self-mapping T : C → C as

Tu =

{
u if |u| < 8

u + 3 if |u| ≥ 8
,

for all u ∈ C. The self-mapping T is an Nu0-type contractive self-mapping with φ(t) = t
2

and u0 = 0. Indeed, we get

d(Tu, u) = |u − u| = 0, (4.4)

for all u ∈ R such that |u| < 8 and

d(Tu, u) = |u + 3 − u| = 3, (4.5)

for all u ∈ R such that |u| ≥ 8. Then using the equality (4.4), we have

0 ≤ φ(N(u, 0)) = φ

(
max

{
d(u, 0), d(u, Tu), d(0, T0),

d(0,T0)[1+d(u,Tu)]
1+d(u,0)

,
d(u,Tu)[1+d(0,T0)]

1+d(Tu,T0)

})

= φ(|u|) = |u|
2



Discontinuity at fixed points with applications 585

and using the equality (4.5), we get

3 ≤ φ(N(u, 0)) = φ

(
max

{
d(u, 0), d(u, Tu), d(0, T0),

d(0,T0)[1+d(u,Tu)]
1+d(u,0)

, d(u,Tu)[1+d(0,T0)]
1+d(Tu,T0)

})

= φ

(
max

{
|u| , 3, 0, 0,

3

1 + |u + 3|

})
= φ(|u|) = |u|

2
.

Clearly, we have
r = min {d(Tu, u) : Tu 6= u} = 3

and the circle C0,3 is a fixed circle of T.

We note that discontinuity of any self-mapping T on its fixed circle can be
determined using the number N(u, v) defined in (1.1). We give the following
proposition.

Proposition 4.2. Let (X, d) be a metric space, T a self-mapping on X and Cu0,r a fixed
circle of T. Then T is discontinuous at any u ∈ Cu0,r if and only if lim

z→u
N(z, u) 6= 0.

Proof. Let T be a continuous self-mapping at u ∈ Cu0,r and un → u. Then
Tun → Tu = u and d(un, Tun) → 0. Hence we get

lim
n

N(un, u) = lim
n

(
max

{
d(u, un), d(un, Tun),

d(un, Tun)[1 + d(u, Tu)]

1 + d(u, un)

})
= 0.

Conversely, if lim
un→u

N(un, u) = 0 then d(un, Tun) → 0 as un → u. This implies

Tun → u = Tu, that is, T is continuous at u.

Example 4.4. If we consider the function T defined in Example 4.2 then it is easy to
check that T satisfies the conditions of Theorem 4.1 for the circle C−1, 1

2
= {− 3

2 ,− 1
2}. By

the above proposition, it can be easily deduced that the function T is continuous on its
fixed circle.

5 An Application to Complex-Valued Activation Functions

In the past decades, real and complex-valued neural networks with discontin-
uous activation functions have emerged as an important area of research. For
example, in [6], global convergence of neural networks with discontinuous neu-
ron activations was studied. In [12], the problem of multistability was examined
for competitive neural networks associated with discontinuous non-monotonic
piecewise linear activation functions. In [22], some theoretical results were
presented on dynamical behavior of complex-valued neural networks with
discontinuous neuron activations. In [11], the multistability issue is considered
for the complex-valued neural networks with discontinuous activation functions
and time-varying delays using geometrical properties of the discontinuous acti-
vation functions and the Brouwer’s fixed point theory. Recently, some theoretical
results on the fixed-point (resp. the fixed-circle) problem have been applied to
real-valued discontinuous activation functions (see [13, 14, 20] for more details).
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By these motivations, we investigate some applications of our obtained results to
real or complex-valued discontinuous activation functions.

In [10], the authors considered some partitioned activation functions for real
numbers. For example, the typical form of these activation functions is

f (x) =

{
f0(x) , x < 0
f1(x) , x ≥ 0

,

where f0 and f1 are local functions. Also this typical form was generalized as
follows:

f (x) =





f0(x) , x < x0

f1(x) , x0 < x ≤ x1
...

fn−1(x) , xn−2 < x ≤ xn−1

fn(x) , xn−1 < x

. (5.1)

If we consider the following example of a partitioned activation function de-
fined as

f (x) =

{
0 , x < 0

x2 − 27x + 192 , x ≥ 0
,

for all x ∈ R, then the function f fixes the points x1 = 12, x2 = 16. The function
f is continuous at the fixed points x1 = 12, x2 = 16. This follows easily by
calculating the following equation

lim
u→x

N(u, x) = 0.

These fixed points can be also considered on a circle. Using the usual metric, we
deduce that the circle C14,2 = {12, 16} is the fixed circle of f and f is continuous
on its fixed circle.

If we use a generalized form of the typical activation functions defined as in
(5.1), then our discontinuity and fixed-circle results will important for determin-
ing the fixed points and discontinuity points.

The usage of a complex-valued neural network can be lead many advantages.
For example, from [11], we know that it would be better to choose the complex-
valued networks instead of the real-valued ones for the high-capacity associative
memory tasks.

Now we consider the complex function fk(v) defined in [11] as

fk(v) = f R
k (ṽ) + i f I

k (v̂),

where v = ṽ + iv̂ with ṽ, v̂ ∈ R and f R
k (.), f I

k (.) : R → R are discontinuous
functions defined as follows:

f R
k (ṽ) =





µk , −∞ < ṽ < rk

f R
k,1(ṽ) , rk ≤ ṽ ≤ sk

f R
k,2(ṽ) , sk < ṽ ≤ pk

ωk , pk < ṽ < +∞
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and

f I
k (v̂) =





µk , −∞ < v̂ < rk

f I
k,1(v̂) , rk ≤ v̂ ≤ sk

f I
k,2(v̂) , sk < v̂ ≤ pk

ωk , pk < v̂ < +∞

,

in which f R
k (sk) = f R

k,2(sk), f I
k (sk) = f I

k,2(sk), f R
k,1(rk) = f R

k,2(pk) = µk, f I
k,1(rk) =

f I
k,2(pk) = µk, ωk 6= µk, ωk 6= µk. Then the real and imaginary parts of the function

fk(v), that is, the functions f R
k (.) and f I

k (.) are discontinuous at the points pk

and pk, respectively. In [11], an example of a two-neuron complex-valued neural
network was given using the following activation functions defined as:

f R
1 (η) = f I

2 (η) =





− 113
7 , −∞ < η < −3

132
63 η − 621

63 , −3 ≤ η ≤ 6

− 2
7η2 + 2η + 1 , 6 < η ≤ 12

47
7 , 12 < η < +∞

(5.2)

and

f R
2 (η) = f I

1 (η) =





− 53
7 , −∞ < η < −3

− 2
7 η2 + 2η + 1 , −3 ≤ η ≤ 2

− 40
49η + 269

49 , 2 < η ≤ 16
55
7 , 16 < η < +∞

, (5.3)

whose images are seen in the following figure.
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-15
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5

(a) f R
1 (η), f I

2 (η).

-15 -10 -5 0 5 10 15

-5

0

5

(b) f R
2 (η), f I

1 (η).

Figure 1: The graphs of the activation functions for k = 1, 2.

The functions f R
1 (η), f I

2 (η) defined in (5.2) are discontinuous at the point

η = 12, but this point is not fixed by these functions. Also, the point η = − 113
7 is

the fixed point of these functions and they are continuous at this point. Indeed, if
we use the number of N(u, v) defined in (1.1), then we have

lim
u→η

N(u, η) = 0,

that is, the functions f R
1 (η), f I

2 (η) are continuous at the fixed point η = − 113
7 .

By the similar approaches, the functions f R
2 (η) and f I

1 (η) defined in (5.3) are
discontinuous at the point η = 16, but this point is not a fixed point of these
functions. These functions fix the points η1 = 269

89 and η2 = − 53
7 and they are

continuous at these points. Alternatively, we can say that the functions f R
2 (η),
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f I
1 (η) have a fixed circle. That is, the circle C− 1417

623 , 3300
623

=
{
− 53

7 , 269
89

}
is the fixed

circle both of the functions f R
2 (η) and f I

1 (η).
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