
Geometric features of general differential

solutions

Rosihan M. Ali See Keong Lee Saiful R. Mondal

Abstract

This papers examines the general differential equation

y′′(z) + a(z)y′(z) + b(z)y(z) = 0

in the unit disk of the complex plane, and finds conditions on the analytic
functions a and b that ensures the solutions are Janowski starlike. Also stud-
ied is Janowski convexity of solutions to

z(1 − z)y′′(z) + a(z)y′(z) + αy(z) = 0,

where α is a given constant. Janowski starlikeness and Janowski convexity
encompass various widely studied classes of classical starlikeness and con-
vexity. As application, we give convexity and starlikeness geometric descrip-
tion of solutions to differential equations related to several important special
functions.

1 Introduction

Let A denote the class of normalized analytic functions f in the open unit disk
D = {z : |z| < 1} satisfying f (0) = 0 = f ′(0)− 1. Denote by S∗ and C respec-
tively the widely studied subclasses of A consisting of univalent (one-to-one)
starlike and convex functions. Geometrically f ∈ S∗ if the linear segment tw,
0 ≤ t ≤ 1, lies completely in f (D) whenever w ∈ f (D), while f ∈ C if f (D) is a
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convex domain. Related to these subclasses is the Cárathéodory class P consist-
ing of analytic functions p satisfying p(0) = 1 and Re p(z) > 0 in D. Analytically,
f ∈ S∗ if z f ′(z)/ f (z) ∈ P , while f ∈ C if 1 + z f ′′(z)/ f ′(z) ∈ P .

For two analytic functions f and g in D, the function f is subordinate to g,
written f ≺ g, or f (z) ≺ g(z), z ∈ D, if there is an analytic self-map ω of D

satisfying ω(0) = 0 and f (z) = g(ω(z)), z ∈ D. Consider now the class P [A, B]
of analytic functions p(z) = 1 + c1z + · · · in D satisfying

p(z) ≺ 1 + Az

1 + Bz
.

Here −1 ≤ B < A ≤ 1. This family P [A, B] has been widely studied, most
notably by Janowski in [13]. Many authors in recent studies have referred to the
class as the Janowski class of functions, which we too shall adopt in this sequel.
The class contains several known classes of functions for judicious choices of A
and B. For instance, if 0 ≤ β < 1, then P [1 − 2β,−1] is the class of functions
p(z) = 1 + c1z + · · · satisfying Re p(z) > β in D. In the limiting case β = 0,
the class reduces to the classical Cárathéodory class P . It is readily shown that
p ∈ P [A, B] whenever

p(z) =
(1 − A) + (1 + A)φ(z)

(1 − B) + (1 + B)φ(z)

for some φ ∈ P .
The class of Janowski starlike functions S∗[A, B] consists of f ∈ A satisfying

z f ′(z)/ f (z) ∈ P [A, B],

while the Janowski convex functions C[A, B] are functions f ∈ A satisfying
1 + (z f ′′(z)/ f ′(z)) ∈ P [A, B]. For 0 ≤ β < 1, S∗[1 − 2β,−1] := S∗(β) is
the classical class of starlike functions of order β; S∗[1 − β, 0] := S∗

β = { f ∈ A :

|z f ′(z)/ f (z) − 1| < 1 − β}, and S∗[β,−β] := S∗[β] = { f ∈ A :
|z f ′(z)/ f (z) − 1| < β|z f ′(z)/ f (z) + 1|}. These are all classes that have been
widely studied, see for example, in the works of [2, 3].

Further to recent works of [4, 14, 22, 25, 26, 30], this article treats the general
second-order differential equation

c(z)y′′(z) + a(z)y′(z) + b(z)y(z) = 0, (1.1)

and finds sufficient conditions on the variable coefficients c, a, and b so that the
solution to (1.1) is either Janowski starlike or Janowski convex. With appropriate
choices of the functions a, b, and c, the differential equation (1.1) gives rise to sev-
eral important differential equations. These include the confluent and Gaussian
hypergeometric differential equations, as well as the Bessel differential equation.
The paper by Hästö et al. in [14] perhaps contains the best known results in the
case dealing with the hypergeometric differential equation. It is this generality
that piqued our interest to the present work.

In the following section, we look at the differential equation (1.1) with
c(z) = 1. We find conditions that will ensure its solution is Janowski starlike.



Geometric features of general differential solutions 553

Section 3 deals with Janowski convexity of solutions to (1.1) in the case
c(z) = z(1 − z) and b a complex constant function. In sections 4 and 5, exam-
ples related to several important special functions are constructed to illuminate
the geometric features of the general differential solutions.

The principle of differential subordination [20, 21] provides an important tool
in the investigation of various classes of analytic functions. One such useful result
used in the sequel is the following lemma.

Lemma 1.1. [20, 21] Let Ω ⊂ C, and Ψ : C2 × D → C satisfy

Ψ(iρ, σ; z) 6∈ Ω

for z ∈ D, and real ρ, σ such that σ ≤ −(1+ ρ2)/2. If p is analytic in D with p(0) = 1,
and Ψ(p(z), zp′(z); z) ∈ Ω for z ∈ D, then Re p(z) > 0 in D.

2 Janowski starlike solutions

In this section, sufficient conditions are obtained that ensure the solution of (1.1)
maps D into a Janowski starlike domain.

Theorem 2.1. Let a and b be two analytic functions defined in D for which the differen-
tial equation

y′′(z) + a(z)y′(z) + b(z)y(z) = 0 (2.1)

has a solution F satisfying F(0) = 0, F′(0) = 1, and F(z) 6= 0 for z ∈ D \ {0}.
Suppose that −1 ≤ B < A ≤ 1, zF′(z)/F(z) 6= (1 + A)/(1 + B) for z ∈ D, and

(1 + B)
(

(1 + A)Re{za(z)} + (1 + B)Re{z2b(z)}
)

6= −(A − B)(2 + A).

Further, let

D1(A, B; z) = (1 − B2) Im{z2b(z)}+ (1 − AB) Im{za(z)},

D2(A, B; z) = (A − B)(2 + A)

+ (1 + B)
(

(1 + A)Re{za(z)} + (1 + B)Re{z2b(z)}
)

. (2.2)

Then F ∈ S∗[A, B] if either

(a) D2(A, B; z) > 0, and

(1 − A)(1 − B)Re{za(z)} + (1 − B)2 Re{z2b(z)}

− (A − B)(2 − A) < − (D1(A, B; z))2

D2(A, B; z)
, (2.3)

or
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(b) D2(A, B; z) < 0, and

(1 − A)(1 − B)Re{za(z)} + (1 − B)2 Re{z2b(z)}−

(A − B)(2 − A) > − (D1(A, B; z))2

D2(A, B; z)
.

Proof. Consider the transformation

F(z) = exp

(

−1

2

∫ z

0
a(t)dt

)

v(z). (2.4)

Then

F′(z) = exp

(

−1

2

∫ z

0
a(t)dt

) [

−1

2
a(z)v(z) + v′(z)

]

,

F′′(z) = exp

(

−1

2

∫ z

0
a(t)dt

) [(

−1

4
a2(z)− 1

2
a′(z) + b(z)

)

v(z) + v′′(z)
]

,

and equation (2.1) takes the form

v′′(z) +
(

b(z) − 1

2
a′(z)− 1

4
a2(z)

)

v(z) = 0. (2.5)

Next let

u(z) :=
zv′(z)
v(z)

− z

2
a(z).

Since F(z) 6= 0 for all z ∈ D \ {0}, it follows from (2.4) that v(z) 6= 0 for all
z ∈ D \ {0}. Then (2.5) becomes

zu′(z) + (za(z) − 1)u(z) + u2(z) + z2b(z) = 0. (2.6)

Now define the function

q(z) :=
−(1 − A) + (1 − B)u(z)

(1 + A)− (1 + B)u(z)
.

Since limz→0 u(z) = 1, it follows that q(0) = 1, and q is analytic in D provided
(1 + B)u(z) 6= 1 + A, or equivalently, whenever zF′(z)/F(z) 6= (1 + A)/(1 + B).
A computation gives

u(z) =
(1 − A) + (1 + A)q(z)

(1 − B) + (1 + B)q(z)
, u′(z) =

2(A − B)q′(z)
[(1 − B) + (1 + B)q(z)]2

,

and from (2.6),

2(A − B)zq′(z) + za(z)
(

1 − A + (1 + A)q(z)
)(

1 − B + (1 + B)q(z)
)

+ z2b(z)
(

(1 − B) + (1 + B)q(z)
)2

− (A − B)
(

1 − q(z)
)(

1 − A + (1 + A)q(z)
)

= 0. (2.7)
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To apply the subordination tool, let Ω = {0} and

Ψ(r, s; z) := 2(A − B)s + za(z)
(

1 − A + (1 + A)r
)

(1 − B + (1 + B)r)

+ z2b(z)
(

(1 − B) + (1 + B)r
)2 − (A − B)(1 − r)(1 − A + (1 + A)r).

Then (2.7) shows that Ψ(q(z), zq′(z); z) ∈ Ω. To apply Lemma 1.1, it suffices to
show Re Ψ(iρ, σ; z) 6= 0 for ρ ∈ R, σ ≤ −(1 + ρ2)/2, and z ∈ D. Now

Re Ψ(iρ, σ; z) = 2(A − B)σ + Re
{

za(z)(1 − A + (1 + A)iρ)(1 − B + (1 + B)iρ)
}

+ Re
{

z2b(z)(1 − B + (1 + B)iρ)2
}

− Re
{

(A − B)(1 − A + 2Aiρ + (1 + A)ρ2)
}

< −(A − B)(1 + ρ2) + Re
{

za(z)[1 − A + (1 + A)iρ][1 − B + (1 + B)iρ]
}

+ Re
{

z2b(z)[1 − B + (1 + B)iρ]2
}

− (A − B)
[

(1 − A) + (1 + A)ρ2
]

= −(A − B)(2 + A)ρ2 + Re{za(z)}
[

(1 − A)(1 − B)− (1 + A)(1 + B)ρ2
]

− 2(1 − AB) Im{za(z)}ρ + Re{z2b(z)}
[

(1 − B)2 − (1 + B)2ρ2
]

− 2(1 − B2) Im{z2b(z)}ρ − (A − B)(2 − A)

= −D2(A, B; z)

[

ρ +
D1(A, B; z)

D2(A, B; z)

]2

+
(D1(A, B; z))2

D2(A, B; z)

+ (1 − A)(1 − B)Re{za(z)} + (1 − B)2 Re{z2b(z)} − (A − B)(2 − A), (2.8)

where D1(A, B; z) and D2(A, B; z) are given by (2.2).
For −1 ≤ B < A ≤ 1 and z ∈ D, it is clear that D2(A, B; z) 6= 0 unless

(1 + B)
(

(1 + A)Re{za(z)} + (1 + B)Re{z2b(z)}
)

= −(A − B)(2 + A).

For any ρ ∈ R, it follows from (2.8) and the assumptions of the theorem that
Re Ψ(iρ, σ; z) 6= 0. Thus Lemma 1.1 shows that Re(q(z)) > 0, that is, q(z) ∈ P .
Consequently

u(z) =
(1 − A) + (1 + A)q(z)

(1 − B) + (1 + B)q(z)

lies in P [A, B]. Since u(z) = zF′(z)/F(z), this implies that F ∈ S∗[A, B].

Remark 2.2. It would be of interest to find sufficient conditions on the variable coeffi-
cients a and b that would ensure the solution to (2.1) vanishes only at the origin. Though
this general problem seems formidable, in this sequel, we shall demonstrate several exam-
ples that show Theorem 2.1 holds true. For instance, in the case the coefficient b is the
zero function, then the solution of

y′′(z) + a(z)y′(z) = 0

satisfying y(0) = 0 and y′(0) = 1 is given by

y(z) =
∫ z

0
exp

(

−
∫ s

0
a(t)dt

)

ds.

Clearly there is a large class of functions a that ensure the non-vanishing solutions of
(2.1) in the punctured unit disk.
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For β ∈ [0, 1), choosing A = 1 − 2β, and B = −1 in Theorem 2.1(a), leads to
the following result.

Corollary 2.1. Let β ∈ [0, 1).Under the assumptions of Theorem 2.1, the solution of the
differential equation (2.1) is starlike of order β whenever

(1 − β)
(

Im{za(z)}
)2

+ 2(3 − 2β)
[

β Re{za(z)} + Re{z2b(z)}
]

< (1 − β)(3 − 2β)(1 + 2β).

As an example, consider the function F(z) = zeαz. A calculation yields

Re

(

zF′(z)
F(z)

)

= Re (αz + 1) > 1 − |α|, z ∈ D.

Hence, F is starlike of order β = 1 − |α| in D for 0 < |α| ≤ 1. Since F is the solu-
tion of y′′(z)− 2αy′(z) + α2y(z) = 0 with y(0) = 0 and y′(0) = 1, the starlikeness
of F also follows from Corollary 2.1 by taking a(z) = −2α, b(z) = α2.

The error function [1] is given by

erf (z) :=
2√
π

∫ z

0
e−t2

dt =
2√
π

∞

∑
n=0

(−1)n

n! (2n + 1)
z2n+1.

It is evident that (
√

π/2)erf (z) is the solution of the initial-value differential equa-
tion

y′′(z) + 2zy′(z) = 0

satisfying y(0) = 0 and y′(0) = 1.
The error function have widespread applications, for example, in the areas of

probability theory, statistics, and partial differential equations. It relates to the
confluent hypergeometric functions through

√
πerf (z) = 2z1F1(1/2; 3/2;−z2).

Functional inequalities involving the real error function can be found in [5].
Kreyszig and Todd [17] proved that the radius of univalence of erf is 1.574 . . .,
while Ruscheweyh and Singh [28] showed that the error function (

√
π/2)erf (z)

is starlike of order β ≈ 0.4925. In [12], Coman determined the radius of star-
likeness of the error function. Later, Ponnusamy and Vuorinen [26] proved that
z1F1(1/2; 3/2;−z2) is close-to-convex with respect to − log ((1 + z)/(1 − z)) , and

starlike of order
√

2 − 1 ≈ 0.4142.
Related to the error function is the Gaussian probability function [24] A given

by

A(x) :=
1√
2π

∫ x

−x
e−

u2

2 du = erf

(

x√
2

)

. (2.9)

The following result is a special case of Corollary 2.1 and gives starlikeness of
the Gaussian probability function A.
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Corollary 2.2. Fixed β ∈ [0, 1), and let β0 ≈ 0.386963 be the root of

6β3 − 9β2 + 1 = 0

in [0, 1). Then the solution of the differential equation

(1 − β)y′′(z) + β(3 − 2β)zy′(z) = 0, y(0) = 0, y′(0) = 1, (2.10)

is starlike of order β provided β < β0. In particular
√

π/2 A(z) is starlike of order

(2 −
√

2)/2 ≈ 0.292893.

Proof. Comparing (2.10) with (2.1), the variable coefficients are

a(z) =
β(3 − 2β)

1 − β
z and b(z) = 0.

For z = x + iy with x2
< 1 − y2, it follows that

(1 − β)
(

Im{za(z)}
)2

+ 2(3 − 2β)[β Re{za(z)} + Re{z2b(z)}]

= 4(1 − β)

(

β(3 − 2β)

1 − β

)2

x2y2 + 2(3 − 2β)
β(3 − 2β)

1 − β
(x2 − y2)

< 4(1 − β)

(

β(3 − 2β)

1 − β

)2

y2(1 − y2) + 2(3 − 2β)
β(3 − 2β)

1 − β
(1 − 2y2)

=
2β2(3 − 2β)2

1 − β

(

1 − 2y4
)

<
2β2(3 − 2β)2

1 − β
.

Thus the condition in Corollary 2.1 holds provided

2β2(3 − 2β)2 ≤ (1 − β)2(3 − 2β)(1 + 2β),

which is satisfied for all β ∈ [0, β0).
As observed in the remark above, it is readily seen that the solution of the

differential equation

y′′(z) + αzy′(z) = 0, y(0) = 0, y′(0) = 1, (2.11)

is univalent in the unit disk at least for |α| ≤ π.

Its solution is
√

π/(2α) erf(
√

αz/
√

2) for α > 0. In particular, for α = 1, the

solution of (2.11) is
√

π/2 erf(z/
√

2) =
√

π/2 A(z). Since

β(3 − 2β)

1 − β
= 1 =⇒ β =

2 −
√

2

2
,

it follows from (2.10) that
√

π/2 A(z) is starlike of order β = (2 −
√

2)/2.
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3 Solutions which are Janowski convex

We turn to a different type of differential equation in this section, and derive, by
the principle of subordination, sufficient conditions that ensure its solutions are
Janowski convex.

Theorem 3.1. Consider the second order differential equation

z(1 − z)y′′(z) + a(z)y′(z) + αy(z) = 0, (3.1)

where α is a constant. Suppose that Φ is a solution of (3.1) satisfying Φ′(z) 6= 0 for all
z ∈ D. Then

1 +
zΦ′′(z)
Φ′(z)

≺ 1 + Az

1 + Bz

provided

Re

(

(A − B)(1 − z)

D2(A, B; z)

)

> 0, Re

(

D1(A, B; z)

D2(A, B; z)

)

≥ 0,

and Re

(

D3(A, B; z)

D2(A, B; z)

)

> 0.

Here

D1(A, B; z) = (A − B)(1 + B)(a(z) − z) + z(1 + B)2(a′(z) + α),

D2(A, B; z) = −2B(A − B)(a(z) − z)− 2(A − B)2(1 − z)+

2z(1 − B2)(a′(z) + α) 6= 0,

D3(A, B; z) = (1 − B)(A − B)(a(z) − z)− (1 − B)2z(a′(z) + α)

− (A − B − 1)(A − B)(1 − z). (3.2)

Further, if for some a, α, A and B, the expression D2(A, B; z) = 0 for all z ∈ D, then the
conclusion also holds provided

Re D1(A, B; z) ≥ 0 and Re D3(A, B; z) ≥ 0.

Proof. Let the analytic function p be given by

p(z) :=
(A − B)Φ′(z) + (1 − B)zΦ′′(z)
(A − B)Φ′(z)− (1 + B)zΦ′′(z)

,

or equivalently,

zΦ′′(z)
Φ′(z)

=
(A − B)(p(z) − 1)

(1 − B) + (1 + B)p(z)
. (3.3)

Differentiating, (3.3) yields

z2Φ′′′(z)
Φ′(z)

+
zΦ′′(z)
Φ′(z)

−
(

zΦ′′(z)
Φ′(z)

)2

=
(A − B)zp′(z)

(1 − B) + (1 + B)p(z)

− (A − B)(1 + B)(p(z) − 1)zp′(z)

((1 − B) + (1 + B)p(z))2
,
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that is,

z2Φ′′′(z)
Φ′(z)

=
(A − B) (zp′(z)− p(z) + 1)

(1 − B) + (1 + B)p(z)

+
(A − B)

(

p(z)− 1
) [

(A − B)
(

p(z) − 1
)

− (1 + B)zp′(z)
]

[(1 − B) + (1 + B)p(z)]2
. (3.4)

As a solution of (3.1), the function Φ satisfies the differential equation

z(1 − z)Φ′′(z) + a(z)Φ′(z) + αΦ(z) = 0.

Thus

z(1 − z)Φ′′′(z) + (1 − 2z + a(z))Φ′′(z) + (a′(z) + α)Φ′(z) = 0,

and consequently,

(1 − z)
z2Φ′′′(z)

Φ′(z)
+ (1 − 2z + a(z))

zΦ′′(z)
Φ′(z)

+ (a′(z) + α)z = 0.

From (3.3) and (3.4), the above equation takes the form

(1 − z)

(

2(A − B)zp′(z)
(1 − B + (1 + B)p(z))2

− (A − B)(p(z) − 1)

1 − B + (1 + B)p(z)
+

(A − B)2(p(z) − 1)2

(

1 − B + (1 + B)p(z)
)2

)

+
(A − B)

(

1 − 2z + a(z)
)

(p(z) − 1)

1 − B + (1 + B)p(z)
+ (a′(z) + α)z = 0.

Equivalently,

2(1 − z)(A − B)zp′(z) + (A − B)(a(z) − z)(p(z) − 1)(1 − B + (1 + B)p(z))

+ (A − B)2(1 − z)(p(z) − 1)2 + z(a′(z) + α)(1 − B + (1 + B)p(z))2 = 0.

A further simplification leads to

(A − B)(1 − z)
(

2zp′(z) + (A − B)p2(z) + 1
)

+ D1(A, B; z)p2(z)

+ D2(A, B; z)p(z) − D3(A, B; z) = 0,

where D1(A, B; z), D2(A, B; z), and D3(A, B; z) are given by (3.2).
Next suppose that D2(A, B; z) 6= 0, and let Ψ : C2 × D → C be given by

Ψ
(

p(z), zp′(z); z
)

=
(A − B)(1 − z)

D2(A, B; z)

(

2zp′(z) + (A − B)p2(z) + 1
)

+
D1(A, B; z)

D2(A, B; z)
p2(z) + p(z)− D3(A, B; z)

D2(A, B; z)
. (3.5)

Let Ω = {0}. We shall show that Ψ(iρ, σ; z) /∈ Ω for σ ≤ −(1 + ρ2)/2 and ρ ∈ R.
For this purpose, it suffices to show that Re Ψ(iρ, σ; z) < 0. From (3.5), it is clear
that
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Re Ψ
(

p(z), zp′(z); z
)

= Re
(A − B)(1 − z)

D2(A, B; z)

(

2σ − (A − B)ρ2 + 1

)

− D1(A, B; z)

D2(A, B; z)
ρ2 − Re

D3(A, B; z)

D2(A, B; z)

≤ −Re

(

(A − B)(1 − z)

D2(A, B; z)

)

(1 + A − B)ρ2

− Re

(

D1(A, B; z)

D2(A, B; z)

)

ρ2 − Re

(

D3(A, B; z)

D2(A, B; z)

)

< 0.

Accordingly, Lemma 1.1 yields Re p(z) > 0, which readily implies

1 +
zΦ′′(z)
Φ′(z)

≺ 1 + Az

1 + Bz
.

With B = −1 and A = 1 − 2β, Theorem 3.1 describes the convexity of order
β ∈ [0, 1) of solutions to the differential equation (3.1).

Corollary 3.1. Under the assumptions of Theorem 3.1, the solution Φ to the differential
equation (3.1) satisfying Φ(0) = 1 is convex of order β ∈ [0, 1) provided

Re
1 − z

a(z) + (1 − 2β)z − 2(1 − β)
> 0,

and Re





a(z) − 1
2 + β −

(

1
2 + β + a′(z)+α

1−β

)

z

a(z) + (1 − 2β)z − 2(1 − β)



 > 0.

4 Special examples of Janowski starlikeness

This section considers applications of Theorem 2.1 to deduce Janowski starlike-
ness of solutions to several widely studied differential equations.

Example 1. Consider the function

f1(z) =
√

2 sin

(

z√
2

)

.

It is easily seen that f1 is a solution of

2W ′′(z) + W(z) = 0.

Choosing A = 1, B = −1, b(z) = 1/2, and a(z) = 0 in (2.3), the condition is satisfied
whenever Re(z2) ≤ 1, which trivially holds for |z| < 1. Thus the solution f1 is starlike.

Example 2. The function

f2(z) = 2
√

πez2/16erf
( z

4

)
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is easily seen to be a solution of the differential equation

8y′′(z)− zy′(z)− y(z) = 0.

Since erf (0) = 0, it follows that f2(0) = 0 = f
′
2(0)− 1. Let B = −1, a(z) = −z/8,

and b(z) = −1/8 in (2.3). For z = x + iy with x, y ∈ (−1, 1) and x2 + y2
< 1, it

follows that

(1 + A)(Im(za(z)))2 + 2(1 − A)(2 + A)Re(za(z)) + 4(2 + A)Re(z2b(z))

= (1 + A)

(

Im

(

−z2

8

))2

+ 2(1 − A)(2 + A)Re

(

−z2

8

)

+ 4(2 + A)Re

(

−z2

8

)

=
1

16
(1 + A)x2y2 − 1

4
(2 + A)(3 − A)(x2 − y2)

<
1

16
(1 + A)x2(1 − x2)− 1

4
(2 + A)(3 − A)(2x2 − 1) ≤ 1

4
(2 + A)(3 − A).

Thus, condition (2.3) holds whenever 4(1 + A)(4 − A2) ≥ (2 + A)(3 − A). Conse-
quently, Theorem 2.1 implies that f2 ∈ S∗[A,−1] for A ≥ A0 ≃ −0.655869, where A0

is the root of the equation 4A3 + 3A2 − 15A − 10 = 0 in (−1, 1]. In particular, f2 is
univalently starlike in D.

Example 3. The Bessel function Jν of order ν is the solution of the differential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0. (4.1)

Several earlier works on the geometric properties of the Bessel function and its general-
izations can be found in [6–11, 15, 16, 23, 29, 31].

Here we consider the function

f3(z) =
π

sin(πν)

(

J−ν(1)Jν(
√

ez)− Jν(1)J−ν(
√

ez)

)

, ν /∈ Z.

Clearly,

f3(0) =
π

sin(πν)

(

J−ν(1)Jν(1)− Jν(1)J−ν(1)
)

= 0,

and

f ′3(z) =
π
√

ez

2 sin(πν)

(

J−ν(1)J′ν(
√

ez)− Jν(1)J′−ν(
√

ez)

)

.

From the recurrence relation

Jν−1(z)− Jν+1(z) = 2J′ν(z),

it follows that

f ′3(z) =
π
√

ez

4 sin(πν)

(

J−ν(1)Jν−1

(√
ez
)

− J−ν(1)Jν+1

(√
ez
)

− Jν(1)J−ν−1

(√
ez
)

+ Jν(1)J1−ν

(√
ez
)

)

.
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It is known [1, p.360] that the Wronskian is

W (Jν(z), J−ν(z)) = Jν+1(z)J−ν(z) + Jν(z)J−ν−1(z) = −2 sin(πν)

πz
.

Thus,

f ′3(0) =
π

4 sin(πν)

(

J−ν(1)Jν−1 (1)− J−ν(1)Jν+1 (1)− Jν(1)J−ν−1 (1)

+ Jν(1)J1−ν (1)

)

=
π

4 sin(πν)

((

J−ν(1)Jν−1 (1) + Jν(1)J1−ν (1)

)

−
(

J−ν(1)Jν+1 (1)

+ Jν(1)J−ν−1 (1)

))

=
π

4 sin(πν)

(

− 2 sin(−πν)

π
+

2 sin(πν)

π

)

= 1.

The second order derivative of f3 can now be expressed as

f ′′3 (z) =
πez

4 sin(πν)

(

J−ν(1)J′′ν (
√

ez)− Jν(1)J′′−ν(
√

ez)

)

+
π
√

ez

4 sin(πν)

(

J−ν(1)J′ν(
√

ez)− Jν(1)J′−ν(
√

ez)

)

=
π J−ν(1)

4 sin(πν)

(

ez J′′ν (
√

ez) +
√

ez J′ν(
√

ez)

)

− π Jν(1)

4 sin(πν)

(

ez J′′−ν(
√

ez) +
√

ez J′−ν(
√

ez)

)

.

Recalling the Bessel differential equation (4.1), it follows that

4 f ′′3 (z) + (ez − ν2) f3(z) =
π J−ν(1)

sin(πν)

(

ez J′′ν (
√

ez) +
√

ez J′ν(
√

ez) + (ez − ν2)Jν(
√

ez)

)

− π Jν(1)

sin(πν)

(

ez J′′−ν(
√

ez) +
√

ez J′−ν(
√

ez) + (ez − (−ν)2)J−ν(
√

ez)

)

= 0,

and hence f3 is a solution of the differential equation

4F′′(z) + (ez − ν2)F(z) = 0.

Thus, an application of Theorem 2.1 yields

(i) The function f3 ∈ S∗[A,−1] for −1 < A ≤ 1 if

Re
(

z2(ez − ν2)
)

< (1 + A)(2 − A).

In particular, f3 is starlike whenever Re(z2(ez − ν2)) < 2.

(ii) The function f3 ∈ S∗[A, B] for −1 < B < A ≤ 1 provided

|ez − ν2| ≤ 4 min

{

(A − B)(2 − A)

(1 − B)2
,
(A − B)(2 + A)

(1 + B)2

}

.
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5 Special examples of Janowski convexity

In this final section, Theorem 3.1 is applied to deduce Janowski convexity of so-
lutions to certain differential equations. The first example looks at the case when
a(z) = c − (a + b + 1)z and α = −ab, where a, b are real, and
c ∈ R \ {0,−1,−2, . . .}. Equation (3.1) then takes the form of the widely stud-
ied Gaussian hypergeometric differential equation given by

z(1 − z)y′′(z) +
(

c − (a + b + 1)z
)

y′(z)− aby(z) = 0. (5.1)

The equation (5.1) also holds for a, b ∈ C, and c ∈ C \ {0,−1,−2, . . .}. The solu-
tion of (5.1) is known as the Gaussian hypergeometric function 2F1(a, b; c; z). In
series form, the Gaussian function is given by

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn.

More on the hypergeometric functions can be found, for example, in the book
[32].

Geometric properties of the Gaussian hypergeometric functions have also been
widely investigated. For instance, using continued fractions, starlikeness of the
hypergeometric function was studied in [18], while its order of starlikeness in the
work [28]. In [19], Miller and Mocanu applied the tool of differential subordina-
tion to obtain sufficient conditions on a, b, and c for which 2F1(a, b; c; z) is either
univalent, starlike, or convex. Their results were later generalized in [27].

We next apply Theorem 3.1 to determine convexity of 2F1(a, b; c; z). In this
case,

D1(A, B; z) = D1(a, b, c, A, B, z)
= (A − B)(1 + B)(c − (a + b + 2)z)− (1 + B)2z(a + 1)(b + 1),

D2(A, B; z) = D2(a, b, c, A, B, z)
= −2B(A − B)(c − (a + b + 2)z)

−2(A − B)2(1 − z)− 2(1 − B2)z(a + 1)(b + 1),
D3(A, B; z) = D3(a, b, c, A, B, z)

= (1 − B)(A − B)(c − (a + b + 2)z)
+(1 − B)2z(a + 1)(b + 1)− (A − B − 1)(A − B)(1 − z).

(5.2)

The following result is immediately deduced from Theorem 3.1.

Corollary 5.1. Let a, b, c be real, and −1 ≤ B < A ≤ 1. Suppose 2F′
1(a, b; c; z) 6= 0 in

D. If

Re

(

(A − B)(1 − z)

D2(a, b, c, A, B, z)

)

> 0, Re

(

D1(a, b, c, A, B, z)

D2(a, b, c, A, B, z)

)

≥ 0,

and Re

(

D3(a, b, c, A, B, z)

D2(a, b, c, A, B, z)

)

> 0,

then 2F1(a, b; c; z) ∈ C[A, B], that is,

1 +
z2F′′

1 (a, b; c; z)

2F′
1(a, b; c; z)

≺ 1 + Az

1 + Bz
.
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The relation c 2F′
1(a, b; c; z) = ab 2F1(a + 1, b + 1; c + 1; z) yields

z (z2F1(a, b; c; z))′

z2F1(a, b; c; z)
= 1 +

z2F′′
1 (a − 1, b − 1; c − 1; z)

2F′
1(a − 1, b − 1; c − 1; z)

. (5.3)

Along with Corollary 5.1, and with Di(a, b, c, A, B, z), i = 1, 2, 3 as given in (5.2),
the above relation leads to Janowski starlikeness of z2F1(a, b; c; z) as stated below.

Corollary 5.2. Let a, b, c be real, and −1 ≤ B < A ≤ 1. Suppose 2F′
1(a, b; c; z) 6= 0 in

D. If

Re

(

2(A − B)(1 − z)

D2(a − 1, b − 1, c − 1, A, B, z)

)

> 0, Re

(

D1(a − 1, b − 1, c − 1, A, B, z)

D2(a − 1, b − 1, c − 1, A, B, z)

)

> 0,

and Re

(

D3(a − 1, b − 1, c − 1, A, B, z)

D2(a − 1, b − 1, c − 1, A, B, z)

)

> 0,

then z2F1(a, b; c; z) ∈ S∗[A, B].

For specific values of A and B, for instance, B = −1 and A = 1− 2β, β ∈ [0, 1),
Corollary 5.1 leads to an earlier result of Ponnusamy and Vuorinen [27] on the
order of convexity of 2F1(a, b; c; z).

Corollary 5.3. [27, Theorem 5.1, p. 342] Let a, b, and c be real. Suppose that
(a + 1)(b + 1)β ≤ 0 for β ∈ [0, 1), and 2F′

1(a, b; c; z) 6= 0 in D. If

c ≥ max

{

2(1 − β) + |a + b + 2β|, 1 − ab − (a + 1)(b + 1)β

1 − β

}

,

then 2F1(a, b; c; z) is convex of order β.

The next result gives the convexity of 2F1 which cannot be obtained from
Corollary 5.3.

Corollary 5.4. Let β ∈ [1/4, 1/2], and α ∈ R. Further, let

aα,β :=
β − 1

2
and bα,β :=

1

2

√

1 + 4α − 2β + β2.

Then the Gaussian hypergeometric function f1(z) = 2F1

(

aα,β − bα,β, aα,β + bα,β; 2 − β; z
)

is convex of order β provided 2β2 + β − 2 ≤ α ≤ 2β2 − 2β + 1.

Proof. From its definition, it is clear that f1(z) = 2F1

(

aα,β − bα,β, aα,β + bα,β; 2 − β; z
)

is a solution of the differential equation

z(1 − z)y′′(z) + (2 − β − (2aα,β + 1)z)y′(z) + (a2
α,β − b2

α,β)y(z) = 0.

It is easily shown that a2
α,β − b2

α,β = −α and 2aα,β + 1 = β.

Now choose

a(z) = 2 − β(1 + z)
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in the differential equation (3.1). Then,

Re

(

1 − z

a(z) + (1 − 2β)z − 2(1 − β)

)

= Re

(

1 − z

β + (1 − 3β)z

)

> 0

whenever |1 − 3β| ≤ β; in particular for β ∈ [1/4, 1/2]. Similarly,

Re





a(z) − 1
2 + β −

(

1
2 + β + a′(z)+α

1−β

)

z

a(z) + (1 − 2β)z − 2(1 − β)



 =
3

2β
Re





1 +
2β−2α−(1+4β)(1−β)

3(1−β)
z

1 +
(1−3β)

β z



 .

For β ∈ [1/4, 1/2], define

ω(z) :=
1 + Az

1 + Bz
,

where

A =
2β − 2α − (1 + 4β)(1 − β)

3(1 − β)
, and B =

1 − 3β

β
.

To complete the proof, it suffices to find conditions for which Re ω(z) ≥ 0 for
z ∈ D.

For β ∈ [1/4, 1/2], it immediately follows that |B| ≤ 1. A computation yields
|A| ≤ 1 if and only if 2β2 + β − 2 ≤ α ≤ 2β2 − 2β + 1. The remainder of the proof
is divided into three cases.

But first, let us recall certain mapping properties of the unit disk by the func-
tion ω(z) = (1 + Mz)/(1 + Nz), −1 ≤ M, N ≤ 1. If N 6= ±1, the function ω
maps the unit disk D conformally onto the disk

∣

∣

∣

∣

ω − 1 − MN

1 − N2

∣

∣

∣

∣

<
|N − M|
1 − N2

,

from which it follows that

Re(ω(z)) >



















1 + M

1 + N
, N > M

1 − M

1 − N
, M > N

(5.4)

On the other hand, when N = ±1 , then

Re(ω(z)) >



















1 + M

2
, N = 1

1 − M

2
, N = −1

(5.5)

The three cases to be considered are as follows:

(i) Let β = 1/2. Then B = −1, A = −(4α + 1)/3 and −1 ≤ α ≤ 1/2. In this
case, (5.5) implies

Re ω(z) >
1 − A

2
=

2

3
(1 + α) ≥ 0.
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(ii) Let β = 1/4. Then B = 1, A = −4(1 + 2α)/9, and −13/8 ≤ α ≤ 5/8. Then
(5.5) implies

Re ω(z) >
1 + A

2
=

5 − 8α

18
≥ 0.

(iii) Finally consider the case when β ∈ (1/4, 1/2). For

2β2 + β − 2 ≤ α <
4β3 − 10β2 + 11β − 3

2β
,

we have B < A, and (5.4) implies

Re ω(z) >
1 − A

1 − B
=

2β(α + 2 − β − 2β2)

3(1 − β)(4β − 1)
≥ 0.

On the other hand, suppose

4β3 − 10β2 + 11β − 3

2β
< α ≤ 2β2 − 2β + 1.

Then A < B, and (5.4) implies that

Re ω(z) >
1 + A

1 + B
=

2β(2β2 − 2β + 1 − α)

3(1 − β)(1 − 2β)
≥ 0.

From Corollary 3.1, we deduce that f1 is convex of order β ∈ [1/4, 1/2].

Corollary 5.5. Suppose that β ∈ [0, 1), and c > 2(1− β). Then the Gaussian hypergeo-

metric function f2(z) = 2F1(−β−
√

β2 + 2β − 1,−β+
√

β2 + 2β − 1; c; z) is convex
of order β in the unit disk .

Proof. It is easy to show that f2 is a solution of the differential equation

z(1 − z)y′′(z) + (c − (1 − 2β)z)y′(z) + (1 − 2β)y(z) = 0.

It suffices to show the conditions of Corollary 3.1 hold with a(z) = c − (1 − 2β)z,
and α = 1 − 2β. In this case,

Re

(

1 − z

a(z) + (1 − 2β)z − 2(1 − β)

)

= Re

(

1 − z

c − 2(1 − β)

)

> 0

for all β ∈ [0, 1), and c > 2(1 − β). Also

Re





a(z) − 1
2 + β −

(

1
2 + β + a′(z)+α

1−β

)

z

a(z) + (1 − 2β)z − 2(1 − β)





= Re





c − 1
2 + β − (1 − 2β)z −

(

1
2 + β

)

z

c − 2(1 − β)





=
1

c − 2(1 − β)
Re

(

c − 1

2
+ β −

(

3

2
− β

)

z

)

>
c − 2(1 − β)

c − 2(1 − β)
= 1.

Hence f2 is convex of order β ∈ [0, 1).
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Remark 5.1. It is interesting to note here that for certain judicious choices of α, the
example given in Corollary 5.4 cannot be obtained from Corollary 5.3. Evidently,

(1 + aα,β + bα,β)(1 + aα,β − bα,β)

=
1

4

(

β + 1 +
√

1 + 4α − 2β + β2

)(

β + 1 −
√

1 + 4α − 2β + β2

)

= β − α > 0

for 2β2 + β− 2 ≤ α < β. Also, for any value of α < (−1+ 2β− β2)/4 , the expression
aα,β + bα,β and aα,β − bα,β are complex conjugate numbers.

For β ∈ [0, 1/2) in Corollary 5.5, it follows that

(1 − β −
√

β2 + 2β − 1)(1 − β +
√

β2 + 2β − 1) = 2 − 4β > 0.

Thus, in either case, it does not satisfy the hypothesis of Corollary 5.3.

As a final comparison, we recall the following result by Hästö et. al:

Corollary 5.6. [14, Theorem 1.4, page 175] Let a, b and c be nonzero real numbers such
that 2F1(a, b; c; z) has no zeros in D. Then z2F1(a, b; c; z) is starlike of order β ∈ [0, 1) if

(i) C ≥ 0 (ii) C + (1 − β) ≥ 2A (iii) (1 − β + 2(1 − β)2)C + 2BD + D2 ≥ 0,

where c̃ = c − 1 − (a + b), A = (1 − β)2 − (1 − β)(a + b) + ab,
B = (1 − β)(a + b)− 2(1 − β)2, C = (1 − β)c̃ + ab, and D = (1 − β)c̃.

Remark 5.2. Consider the function f3(z) = z 2F1

(

1 + aα,β − bα,β, 1 + aα,β + bα,β;
3 − β; z), where aα,β and bα,β are defined in Corollary 5.4. Further, let

a = 1 + aα,β − bα,β; b = 1 + aα,β + bα,β and c = 3 − β.

A series of computation yields

a + b = 2 + 2aα,β = 2 + β − 1 = 1 + β,

ab = (1 + aα,β + bα,β)(1 + aα,β − bα,β) = β − α,

c̃ = c − 1 − (a + b) = 3 − β − 1 − (1 + β) = 1 − 2β,

A = (1 − β)2 − (1 − β)(a + b) + ab

= (1 − β)2 − (1 − β)(1 + β) + β − α = 2β2 − β − α,

B = (1 − β)(a + b)− 2(1 − β)2 = −(1 − β)(1 − 3β),

C = (1 − β)c̃ + ab = (1 − β)(1 − 2β) + β − α,

D = (1 − β)c̃ = (1 − β)(1 − 2β)

Now for β ∈ [1/4, 1/2], computations show that

(i) C ≥ 0 if α ≤ (1 − β)(1 − 2β) + β = 1 − 2β + 2β2;

(ii) C + (1 − β) ≥ 2A is equivalent to (1 − β)(1 − 2β) + β − α + (1 − β) ≥
4β2 − 2β − 2α, which holds if α ≥ 2β2 + β − 2;
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(iii) clearly 2B+D = −2(1− β)(1− 3β)+ (1− β)(1− 2β) = (1− β)(−1+ 4β) ≥
0. Since C ≥ 0 and D ≥ 0, it follows that (1− β+ (1− β)2)C+ 2BD+D2 ≥ 0.

We deduce from Corollary 5.6 that the function f3 is starlike of order β ∈ [1/4, 1/2]
if 2β2 + β − 2 ≤ α ≤ 1 − 2β + 2β2. This result also follows from relation (5.3) and
Corollary 5.4.

Remark 5.3. From relation (5.3) and Corollary 5.5, it can be shown that f4(z) =

z2F1(1 − β −
√

β2 + 2β − 1, 1 − β +
√

β2 + 2β − 1; c + 1; z) is starlike of order
β ∈ [0, 1) whenever c > 2(1 − β). Proceeding similarly as described in Remark 5.2,
it follows from Corollary 5.6 that f4 is starlike of order β ∈ [0, 1) provided

c > max
β∈[0,1)

{

2β2

1 − β
,

2(1 − 2β)

1 − β

}

=























2(1 − 2β)

1 − β
, 0 ≤ β ≤

√
2 − 1,

2β2

1 − β
,

√
2 − 1 ≤ β < 1.

Clearly, Corollary 5.5 gives a better range for c whenever β > 1/2; on the other hand,
Corollary 5.6 is better for β < 1/2. At β = 1/2, both results give the range c > 1.
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