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Abstract

Each hypersurface of a nearly Kähler manifold is naturally equipped with
two tensor fields of (1, 1)-type, namely the shape operator A and the induced
almost contact structure φ. In this paper, we show that, in the homoge-
neous nearly Kähler S6 a hypersurface satisfies the condition Aφ + φA = 0
if and only if it is totally geodesic; moreover, similar as for the non-flat com-
plex space forms, the homogeneous nearly Kähler manifold S3 × S3 does not
admit a hypersurface that satisfies the condition Aφ + φA = 0.

1 Introduction

The nearly Kähler (abbrev. NK) manifold S3 × S3 is one of the only four ho-
mogeneous 6-dimensional nearly Kähler spaces (with the remaining three the
NK 6-sphere S6, the complex projective space CP3 and the flag manifold
SU(3)/U(1)×U(1), cf. [5, 6]). Ever since the groundbreaking research of Bolton-
Dillen-Dioos-Vrancken [4], people become increasingly interested in the study of
submanifolds of this homogeneous NK S3 × S3, and many beautiful results have
been established. For details of the study, besides [4], we would refer the readers
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to [8, 12] on almost complex surfaces, to [1, 2, 9, 13, 18] on Lagrangian submani-
folds, and to [11] on hypersurfaces. It is worth mentioning that Foscolo and Hask-
ins [10] have recently constructed cohomogeneity one NK structure on both S6

and S3 × S3. Thus, in order to avoid confusion, from now on in this paper, when
we say NK S6 and NK S3 × S3, we mean always S6 and S3 × S3 equipped with the
homogeneous NK structures that were elaborately described in [7] (cf. references
therein) and [4], respectively.

In the present paper, continuing with our research starting from [11], we will
focus mainly on hypersurfaces of the NK S3 × S3. Recall that given a hypersurface
M of an almost Hermitian manifold with almost complex structure J, it appears
on M two naturally defined tensor fields of (1, 1)-type: a submanifold structure
represented by the shape operator A, and an almost contact structure φ induced
from J. Then, it is an interesting problem to study hypersurfaces with special
relations between A and φ. The first problem one might study is that the shape
operator A and induced almost contact structure φ satisfy the commutativity con-
dition Aφ = φA. Indeed, Okumura [17] and Montiel-Romero [16] considered
real hypersurfaces of the non-flat complex space forms, and they obtained the
classification of such real hypersurfaces satisfying Aφ = φA for complex projec-
tive space [17] and complex hyperbolic space [16], respectively. Moreover, it was
shown that hypersurfaces of the homogeneous NK S6 satisfy Aφ = φA if and
only if they are geodesic hyperspheres (cf. Theorem 2 of [15] and Remark 2.1 of
[11]). Then following this approach, we have considered a similar situation for
the NK S3 × S3 [11], our result is the following classification theorem.

Theorem 1.1 (cf. [11]). Let M be a hypersurface of the homogeneous NK S
3 × S

3 that
satisfies the condition Aφ = φA. Then M is locally given by one of the following immer-
sions f1, f2 and f3:

(1) f1 : S3 × S2 → S3 × S3 de f ined by (x, y) 7→ (x, y);

(2) f2 : S3 × S2 → S3 × S3 de f ined by (x, y) 7→ (y, x);

(3) f3 : S
3 × S

2 → S
3 × S

3 de f ined by (x, y) 7→ (x̄, yx̄),

here, x ∈ S3, y ∈ S2, and as usual S3 (resp. S2) is regarded as the set of the unit (resp.
imaginary) quaternions in the quaternion space H.

One might realize that the next simplest relation between the shape operator
A and the induced almost contact structure φ is the anti-commutativity condition
Aφ + φA = 0. In this respect, to our knowledge only Ki-Suh have shown that
(cf. Lemma 2.1 and Proposition 2.2 of [14]), by denoting M̄n(c) the n-dimensional
complex space form of constant holomorphic sectional curvature c, if there
exists a real hypersurface M of M̄n(c) that satisfies the condition Aφ + φA = 0,
then c = 0 and M is cylindrical. To see how about other ambient spaces, in
this paper, we consider the question for two important 6-dimensional homoge-
neous NK manifolds, namely that the homogeneous NK S6 and the homogeneous
NK S3 × S3. Our first result is the following

Theorem 1.2. The totally geodesic hypersurfaces of the homogeneous NK S6 are the only
hypersurfaces of S6 satisfying the condition Aφ + φA = 0.
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For the homogeneous NK S
3 × S

3, however, in Theorem 1.1 of [11], we have
shown that it admits neither totally umbilical hypersurfaces nor hypersurfaces
having parallel second fundamental form. Now, as the second result of this paper,
a further nonexistence theorem can be proved that is stated as below.

Theorem 1.3. The homogeneous NK S3 × S3 does not admit a hypersurface that satisfies
the condition Aφ + φA = 0.

Acknowledgements. The authors would like to express their heartfelt thanks
to the referee for valuable comments and suggestions with the English language
modification. The first author would also like to thank Professor L. Vrancken for
many enlightening and helpful discussions about the topic related to this paper.

2 Preliminaries

2.1 The homogeneous NK structure on S3 × S3

In this subsection, we review some elementary notions and results from [4].
By the natural identification T(p,q)(S

3 × S
3) ∼= TpS

3 ⊕ TqS
3, we can write a

tangent vector at (p, q) ∈ S3 × S3 as Z(p, q) = (U(p,q), V(p,q)) or simply

Z = (U, V). Then the well-known almost complex structure J on S3 × S3 is given
by

JZ(p, q) = 1√
3
(2pq−1V − U,−2qp−1U + V). (2.1)

Define the Hermitian metric g on S3 × S3 by

g(Z, Z′) = 1
2(〈Z, Z′〉+ 〈JZ, JZ′〉)

= 4
3(〈U, U′〉+ 〈V, V ′〉)− 2

3(〈p−1U, q−1V ′〉+ 〈p−1U′, q−1V〉),
(2.2)

where Z = (U, V), Z′ = (U′, V ′) are tangent vectors, and 〈·, ·〉 is the standard
product metric on S3 × S3. Then {g, J} gives the homogeneous NK structure on
S

3 × S
3.

As usual let G be the (1,2)-tensor field defined by G(X, Y) := (∇̃X J)Y, where
∇̃ is Levi-Civita connection of g. Then, the following further formulas hold:

G(X, Y) + G(Y, X) = 0, (2.3)

G(X, JY) + JG(X, Y) = 0, (2.4)

g(G(X, Y), Z) + g(G(X, Z), Y) = 0, (2.5)

g(G(X, Y), G(Z, W)) = 1
3

[

g(X, Z)g(Y, W) − g(X, W)g(Y, Z)

+ g(JX, Z)g(JW, Y) − g(JX, W)g(JZ, Y)
]

.
(2.6)

An almost product structure P on S3 × S3 is introduced by:

PZ = (pq−1V, qp−1U), ∀ Z = (U, V) ∈ T(p,q)(S
3 × S

3). (2.7)
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Then we have the following formula for ∇̃P:

2(∇̃XP)Y = JG(X, PY) + JPG(X, Y). (2.8)

The curvature tensor R̃ of the homogeneous NK S3 × S3 is given by:

R̃(X, Y)Z = 5
12

[

g(Y, Z)X − g(X, Z)Y
]

+ 1
12

[

g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y)JZ
]

+ 1
3

[

g(PY, Z)PX − g(PX, Z)PY

+ g(JPY, Z)JPX − g(JPX, Z)JPY
]

.

(2.9)

2.2 Hypersurfaces of the homogeneous NK S3 × S3

Let M be a hypersurface of the homogeneous NK S
3 × S

3 with ξ its unit nor-
mal vector field. For any vector field X tangent to M, we have the decomposition

JX = φX + f (X)ξ, (2.10)

where φX and f (X)ξ are, respectively, the tangent and normal parts of JX. Then
φ is a tensor field of type (1,1), and f is a 1-form on M. By definition, φ and f
satisfy the following relations:

{

f (X) = g(X, U), f (φX) = 0, φ2X = −X + f (X)U,

g(φX, Y) = −g(X, φY), g(φX, φY) = g(X, Y)− f (X) f (Y),
(2.11)

where U := −Jξ, which is called the structure vector field of M. Equation (2.11)
shows that (φ, U, f ) determines an almost contact structure over M.

Let ∇ be the induced connection on M with R its Riemannian curvature
tensor. The formulas of Gauss and Weingarten state that

∇̃XY = ∇XY + h(X, Y), ∇̃Xξ = −AX, ∀ X, Y ∈ TM, (2.12)

where h is the second fundamental form, and it is related to the shape operator A
by h(X, Y) = g(AX, Y)ξ. Here, using the formulas of Gauss and Weingarten, we
have

∇XU = φAX − G(X, ξ). (2.13)

The Gauss and Codazzi equations of M are given by

R(X, Y)Z = 5
12

[

g(Y, Z)X − g(X, Z)Y
]

+ 1
12

[

g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y)φZ
]

+ 1
3

[

g(PY, Z)(PX)⊤ − g(PX, Z)(PY)⊤

+ g(JPY, Z)(JPX)⊤ − g(JPX, Z)(JPY)⊤
]

+ g(AZ, Y)AX − g(AZ, X)AY,

(2.14)
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(∇X A)Y − (∇Y A)X = 1
12

[

g(X, U)φY − g(Y, U)φX − 2g(φX, Y)U
]

+ 1
3

[

g(PX, ξ)(PY)⊤ − g(PY, ξ)(PX)⊤

+ g(PX, U)(JPY)⊤ − g(PY, U)(JPX)⊤
]

,

(2.15)

where ·⊤ denotes the tangential part.
Following the usual terminology, we call a hypersurface M of the

NK S3 × S3 the Hopf hypersurface if the integral curves of the structure vector field
U are geodesics of M, that is ∇UU = 0. It is also equivalent that the structure
vector field U is a principal direction, with principal curvature function denoted
by µ. A basic lemma for Hopf hypersurfaces of the NK S3 × S3 is stated as follows:

Lemma 2.1. Let M be a Hopf hypersurface in the homogeneous NK S
3 × S

3. Then we
have

1
6 g(φX, Y) − 2

3

[

g(PX, ξ)g(PY, U) − g(PX, U)g(PY, ξ)
]

= g((µI − A)G(X, ξ), Y) + g(G((µI − A)X, ξ), Y)

− µg((Aφ + φA)X, Y) + 2g(AφAX, Y), X, Y ∈ {U}⊥,

(2.16)

where {U}⊥ denotes a distribution of TM that is orthogonal to U, and I denotes the
identity transformation.

Proof. A direct calculation of (∇X A)U, with using AU = µU, (2.13), we have

(∇X A)U = X(µ)U + (µI − A)(−G(X, ξ) + φAX). (2.17)

It follows that, for ∀ X, Y ∈ {U}⊥,

g((∇X A)Y, U) = g((∇X A)U, Y) = g((µI − A)(−G(X, ξ) + φAX), Y). (2.18)

Thus, we have

g((∇X A)Y − (∇Y A)X, U) =− g((µI − A)G(X, ξ), Y) − 2g(AφAX, Y)

− g(G((µI − A)X, ξ), Y) + µg((Aφ + φA)X, Y).
(2.19)

On the other hand, by using the Codazzi equation (2.15), we get

g((∇X A)Y − (∇Y A)X, U)

= − 1
6 g(φX, Y) + 2

3(g(PX, ξ)g(PY, U) − g(PX, U)g(PY, ξ)).
(2.20)

From (2.19) and (2.20), we immediately get (2.16).

Before concluding this section, following that in [11] we introduce the distri-
bution D. When we study hypersurfaces of the NK S3 × S3, the consideration
of D is very helpful for the choice of a canonical frame. Precisely, for each point
p ∈ M, we define

D(p) := Span {ξ(p), U(p), Pξ(p), PU(p)}.

Since P is anti-commutative with J, it is clear that D defines a distribution on
M with dimension 2 or 4, and that it is invariant under the action of both J and
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P. Along M, let D⊥ denote the distribution in T(S3 × S
3) that is orthogonal to D

at each p ∈ M.
If dimD = 4 holds in an open set, then there exists a unit tangent vector field

e1 ∈ D and functions a, b, c with c > 0 such that

Pξ = aξ + bU + ce1, a2 + b2 + c2 = 1. (2.21)

Put e2 = Je1. From the fact dim D
⊥ = 2 and that D⊥ is invariant under the

action of both J and P, we can choose a local unit vector field e3 ∈ D
⊥ such that

Pe3 = e3. Put e4 = Je3 and e5 = U. Then {ei}5
i=1 is a well-defined orthonormal

basis of TM and, acting by P, it has the following properties:











Pξ = aξ + ce1 + be5, Pe1 = cξ − ae1 − be2,

Pe2 = ce5 − be1 + ae2, Pe3 = e3,

Pe4 = −e4, Pe5 = bξ + ce2 − ae5.

(2.22)

If dimD = 2 holds in an open set, then we can write

Pξ = aξ + bU, a2 + b2 = 1. (2.23)

Now, D⊥ is a 4-dimensional distribution that is invariant under the action of
both J and P. Hence, we can choose unit vector fields e1, e3 ∈ D

⊥ such that
Pe1 = e1, Pe3 = e3. Put e2 = Je1, e4 = Je3 and e5 = U. In this way, we obtain an
orthonormal basis {ei}5

i=1 of TM. However, we would remark that such choice of
{e1, e3} (resp. {e2, e4}) is unique up to an orthogonal transformation.

3 Proof of Theorem 1.2

For basic results of the well-known NK S6, i.e., the six-dimensional unit sphere
S6 equipped with a homogeneous NK structure (J, g), of which J is the almost
complex structure defined by using the vector cross product of purely imaginary
Cayley numbers R

7 and g is the metric induced from the Euclidean space R
7, we

refer to [7] and the references therein.
Let M be an orientable hypersurface of the NK S6 with ξ its unit normal vector

field. Then, the equations from (2.10) up to (2.13) in subsection 2.2 also hold, so
that M admits an almost contact metric structure (φ, U, f , g) induced from the
NK structure of S6, whereas the Codazzi equation becomes

(∇X A)Y = (∇Y A)X, ∀ X, Y ∈ TM. (3.1)

For the NK S6, totally geodesic hypersurfaces do exist and they trivially satisfy
the relation Aφ + φA = 0.

Now, we assume that M is an orientable hypersurface of the NK S6 that satis-
fies the condition Aφ + φA = 0. Then, by definition φU = 0, we have AU = µU,
i.e., M is a Hopf hypersurface and, µ is the principal curvature function corre-
sponding to the structure vector field U. Moreover, if X ∈ {U}⊥ is a principal
vector field with principal curvature function λ, then AφX = −φAX = −λφX
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implies that φX is also a principal vector field with principal curvature function
−λ.

Recall that Berndt-Bolton-Woodward (Theorem 2 of [3]) proved that a con-
nected Hopf hypersurface of the NK S6 is an open part of either a geodesic hy-
persphere of S6 or a tube around an almost complex curve in the NK S6, and the
principal curvature function µ is constant (Lemma 2 of [3]).

Similar to the proof of Lemma 2.1, for Hopf hypersurfaces of the NK S6, we
can easily show that, by using (2.13), the following basic equation holds:

g((µI − A)G(X, ξ), Y) + g(G((µI − A)X, ξ), Y)

− µg((Aφ + φA)X, Y) + 2g(AφAX, Y) = 0, X, Y ∈ TM.
(3.2)

If M is a geodesic hypersphere, then M is totally umbilical and we have a
function λ on M such that AX = λX, ∀ X ∈ TM. This together with Aφ + φA = 0
implies that λ = 0. Hence, M is a totally geodesic hypersurface.

If M is a tube around an almost complex curve Γ with radius r in S6, then,
according to the proof of Proposition 2 and subsequent Remark in [3], we have
AU = − cot r U, and the remaining principal curvatures on the distribution {U}⊥
are tan(θ + r), tan(θ − r) and − cot r for θ ∈ [0, π

2 ) which is a function on M.
Moreover, as [3] has pointed out, the hypersurface M has exactly two or three
distinct principal curvatures at each point. We denote by ν, 2 ≤ ν ≤ 3, the maxi-
mum number of distinct principal curvatures on M, then the set Mν = {x ∈ M|M
has exactly ν distinct principal curvatures at x} is a non-empty open subset of M.
By the continuity of the principal curvature function, each connected component
of Mν is an open subset, and the multiplicities of distinct principal curvatures
remain unchanged on each connected component of Mν, so we can find a local
smooth frame field with respect to the principal curvatures. The following dis-
cussion will be divided into two cases, depending on the value of ν.

Case I. ν = 3.
In this case, on each connected component of M3, the multiplicities of the

distinct principal curvatures, namely tan(θ + r), tan(θ − r) and − cot r, should be
1, 1 and 3, respectively. Then we have an orthonormal frame field {Xi}5

i=1 such
that

{

AX1 = tan(θ + r)X1, AX2 = tan(θ − r)X2, AX3 = − cot rX3,

AX4 = − cot rX4, AX5 = − cot rX5, X5 = U.

Applying the condition Aφ + φA = 0, we have

AφX1 = − tan(θ + r)φX1, AφX2 = − tan(θ − r)φX2, AφX3 = cot rφX3.

Taking X = X1 and Y = φX1 in (3.2), and using Aφ + φA = 0, we get
tan(θ + r) = 0. Analogously, taking X = X2 and Y = φX2 in (3.2), we get
tan(θ − r) = 0, which is a contradiction with tan(θ + r) 6= tan(θ − r). Thus,
Case I does not occur.

Case II. ν = 2.
In this case, M has exactly two distinct principal curvatures, that is, two of the

three principal curvatures tan(θ + r), tan(θ − r) and − cot r are equal. Without
loss of generality, we assume that tan(θ + r) = − cot r, so that the multiplicities
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of the distinct principal curvatures, namely tan(θ − r) and − cot r, are 1 and 4,
respectively. Then, we have an orthonormal frame field {Xi}5

i=1 such that

{

AX1 = tan(θ − r)X1, AX2 = − cot rX2, AX3 = − cot rX3,

AX4 = − cot rX4, AX5 = − cot rX5, X5 = U.

Applying Aφ + φA = 0, we get AφX1 = − tan(θ − r)φX1 and AφX2 =
cot rφX2. Then taking in (3.2) that (X, Y) = (X1, φX1) and (X, Y) = (X2, φX2),
respectively, we immediately get tan(θ − r) = − cot r = 0. This is again a contra-
diction.

This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

To give the proof, we assume that M is a hypersurface of the NK S3 × S3 which
satisfies the condition Aφ + φA = 0. Then, by the fact φU = 0, we see that M is a
Hopf hypersurface with AU = µU. Moreover, if X ∈ {U}⊥ is a principal vector
field with principal curvature function λ, i.e., AX = λX, then AφX = −φAX =
−λφX implies that φX is also a principal vector field with principal curvature
function −λ. We denote λ, −λ, β, −β with λ ≥ 0 and β ≥ 0 the four principal
curvatures on distribution {U}⊥. Since the only possible dimension of D is 2 or
4, we will divide the proof of Theorem 1.3 into the proofs of two Lemmas. First,
we have the following Lemma.

Lemma 4.1. The case dimD = 4 does not occur.

Proof. Suppose that dimD = 4 does occur on some point of M. We denote by
Ω = {x ∈ M| the dimension of D is 4 at x}, then Ω is an open subset of M. Since
Aφ + φA = 0, we can write (2.16) on Ω as

1
6 g(φX, Y) − 2

3

[

g(PX, ξ)g(PY, U) − g(PX, U)g(PY, ξ)
]

= −2g(φA2X, Y)

+ g
(

(µI − A)G(X, ξ), Y
)

+ g
(

G((µI − A)X, ξ), Y
)

, X, Y ∈ {U}⊥.
(4.1)

We denote by ν (ν ≤ 5) the maximum number on Ω of distinct principal
curvatures, then the set Ων := {x ∈ Ω | M has exactly ν distinct principal curva-
tures at x} is a non-empty open subset of M. By the continuity of the principal
curvature function, each connected component of Ων is an open subset, the mul-
tiplicities of distinct principal curvatures remain unchanged on each connected
component of Ων, so we can find a local smooth frame field with respect to the
principal curvatures. From Theorem 1.1 of [11], we know that M can not be to-
tally umbilical, even locally. So the following discussion will be divided into four
cases, depending on the value of ν, 2 ≤ ν ≤ 5.

Case I. ν = 5.

In this case, on each connected component of Ω5, we can have an orthonormal
frame field {Xi}5

i=1 such that

AX1 = λX1, AX2 = βX2, AX3 = −λX3, AX4 = −βX4, AX5 = µX5, (4.2)
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where X3 = JX1, X4 = JX2, X5 = U. As ν = 5, we have λ > 0, β > 0, λ 6= β and
µ 6∈ {λ,−λ, β,−β}. Let {ei}5

i=1 be the frame field as described in (2.22). Then, by

assuming that Xi = ∑
4
j=1 aijej for 1 ≤ i ≤ 4, we have (aij) ∈ SO(4), and by the

choice of {ei}5
i=1 it holds that

ai+2,j = (−1)jai,3−j, ai+2,j+2 = (−1)jai,5−j, i, j = 1, 2. (4.3)

First, taking X = Xi and Y = Xj in (4.1) for 1 ≤ i < j ≤ 4, using (2.3)–(2.5)
and (2.22), we can derive the following equations:

− 1
6 +

2
3c2a2

11 +
2
3c2a2

12 = 2λ2, (4.4)

− 1
6 +

2
3c2a2

21 +
2
3c2a2

22 = 2β2, (4.5)

2
3 c2a11a21 +

2
3 c2a12a22 = (2µ + λ − β)g(G(X1 , X2), U), (4.6)

2
3c2a11a21 +

2
3c2a12a22 = −(2µ − λ + β)g(G(X1 , X2), U), (4.7)

2
3 c2a11a22 − 2

3 c2a12a21 = (2µ − λ − β)g(G(X1 , X2), ξ), (4.8)

2
3c2a11a22 − 2

3c2a12a21 = −(2µ + λ + β)g(G(X1 , X2), ξ). (4.9)

The equations (4.6) and (4.7), (4.8) and (4.9) imply that

4µg(G(X1 , X2), U) = 0, 4µg(G(X1 , X2), ξ) = 0. (4.10)

From (2.3), (2.4) and (2.5) we see that, for 1 ≤ i ≤ 4, it holds g(G(X1 , X2), Xi) =
0. Thus, G(X1, X2) ∈ Span {ξ, U}. On the other hand, from (2.6), we have

g(G(X1 , X2), G(X1, X2)) =
1
3 . (4.11)

It follows from (4.10) that µ = 0.
Second, from the fact AU = 0, we have

(∇X A)U − (∇U A)X = −A∇XU −∇U AX + A∇UX. (4.12)

On the other hand, applying (2.22) to the Codazzi equation (2.15), we can get

(∇e1
A)U − (∇U A)e1 = − 1

12 e2 − 1
3

[

2acU − 2abe1 + (2a2 − 1)e2

]

, (4.13)

(∇e2 A)U − (∇U A)e2 = 1
12e1 − 1

3

[

2bcU + (1 − 2b2)e1 + 2abe2

]

. (4.14)

Then, from (4.12) and (4.13), calculating the U-component of both the right
hand sides, we can get ac = 0. Analogously, from (4.12) and (4.14), we can get
bc = 0. Therefore, according to (2.21), we have a = b = 0 and c = 1.

Third, in order to apply the Codazzi equations, we need to calculate the con-

nections {∇Xi
Xj}. Put ∇Xi

Xj = ∑ Γk
ijXk with Γk

ij = −Γ
j
ik, 1 ≤ i, j, k ≤ 5. Assume

that
g(G(X1 , X2), ξ) = k, g(G(X1 , X2), U) = l. (4.15)

Then (4.11) and the fact G(X1, X2) ∈ Span {ξ, U} show that k2 + l2 = 1
3 .
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By definition and the Gauss and Weingarten formulas, we have the calculation

G(X1, ξ) = −
5

∑
i=1

Γi
15Xi + λX3.

However, according to (2.3)–(2.5) and (4.15), we also have G(X1, ξ) = −kX2 +
lX4. Hence, we obtain

Γ1
15 = 0, Γ2

15 = k, Γ3
15 = λ, Γ4

15 = −l. (4.16)

Similarly, taking (X, Y) = (Xi , ξ) in G(X, Y) = (∇̃X J)Y for 2 ≤ i ≤ 4, and by
use of (2.3)–(2.5) and (4.15), we further obtain











Γ1
25 = −k, Γ2

25 = 0, Γ3
25 = l, Γ4

25 = β,

Γ1
35 = λ, Γ2

35 = −l, Γ3
35 = 0, Γ4

35 = −k,

Γ1
45 = l, Γ2

45 = β, Γ3
45 = k, Γ4

45 = 0.

(4.17)

Moreover, by using (4.15) and the Gauss and Weingarten formulas, we get

lX2 + kX4 = G(U, X1) =
5

∑
i=1

Γi
53Xi −

5

∑
i=1

Γi
51 JXi. (4.18)

It follows that
Γ2

53 + Γ4
51 = l, Γ4

53 − Γ2
51 = k. (4.19)

Finally, we will calculate the expressions (∇U A)ei − (∇ei
A)U for 1 ≤ i ≤ 4.

On one hand, for each 1 ≤ i ≤ 4, we directly calculate (∇U A)ei − (∇ei
A)U,

with the use of ei = ∑
4
j=1 ajiXj and the preceding results (4.16) and (4.17). Then

we get an expression for (∇U A)ei − (∇ei
A)U in terms of the frame field {Xi}4

i=1.
On the other hand, for each 1 ≤ i ≤ 4, we calculate (∇U A)ei − (∇ei

A)U by

the Codazzi equation (2.15). Then, by using (2.22) and ei = ∑
4
j=1 ajiXj, we get

another expression of (∇U A)ei − (∇ei
A)U in terms of the frame field {Xi}4

i=1.
In this way, comparing both calculations of (∇U A)ei − (∇ei

A)U for each
1 ≤ i ≤ 4, we get a matrices equation C = (aij)

TB, where

C =









− 1
4 a12 − 1

4 a22 − 1
4 a11 − 1

4 a21
1
4 a11

1
4 a21 − 1

4 a12 − 1
4 a22

1
12 a14

1
12 a24

1
12 a13

1
12 a23

− 1
12 a13 − 1

12 a23
1

12 a14
1
12 a24









,

B =









U(λ) (λ − β)Γ2
51 + βk 2λΓ3

51 − λ2 (λ + β)Γ4
51 + βl

(β − λ)Γ1
52 − λk U(β) (λ + β)Γ3

52 − λl 2βΓ4
52 − β2

−2λΓ1
53 + λ2 (−λ − β)Γ2

53 − βl −U(λ) (β − λ)Γ4
53 + βk

(−λ − β)Γ1
54 + λl −2βΓ2

54 + β2 (λ − β)Γ3
54 − λk −U(β)









.

Thus, B = (aij)C := (Bij). Using (4.3), it is straightforward to verify that
B = (aij)C is skew-symmetric. From the facts B12 + B21 = 0 and λ 6= β, we

have Γ2
51 = k

2 . Moreover, from the facts B34 + B43 = 0 and λ 6= β, we have
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Γ4
53 = − k

2 . Combining these with (4.19) we get k = 0. Analogously, from the facts
B23 + B32 = 0, B14 + B41 = 0, λ + β 6= 0 and (4.19), we can further get l = 0. Thus,
we get a contradiction to k2 + l2 = 1

3 . This implies that Case I does not occur.

Case II. ν = 4.

In this case, on a connected component of Ω4, without loss of generality, we
are sufficient to consider the following two subcases:
II-(i): λ 6= β, λ > 0, β > 0 and µ ∈ {λ, β,−λ,−β}.
II-(ii): λ = 0, β > 0 and µ 6∈ {0, β,−β}.

For both of the above two subcases, following similar arguments as the discus-
sion of Case I from (4.2) up to (4.11), we can also get µ = 0. This is a contradiction,
showing that Case II does not occur.

Case III. ν = 3.

In this case, on a connected component of Ω3, without loss of generality, we
are sufficient to consider the following three subcases:
III-(i): λ = 0, β > 0 and µ ∈ {β,−β}.
III-(ii): λ = µ = 0 and β > 0.
III-(iii): λ = β > 0 and µ 6∈ {λ,−λ}.

In case III-(i), similar arguments as the discussion of Case I from (4.2) up to
(4.11), we can get µ = 0. Thus, we get a contradiction.

In case III-(ii), taking an orthonormal frame field {Xi}5
i=1 satisfying (4.2), we

still have the equations from (4.4) up to (4.14). Then we can get c = 1. By calcu-
lating (4.4)+(4.5) and that (aij) ∈ SO(4), we further have the conclusion

λ2 + β2 = 1
6 . (4.20)

By λ = 0, we have β =
√

6
6 . Then (4.4) and (4.5) give that

a2
11 + a2

12 = 1
4 , a2

21 + a2
22 = 3

4 . (4.21)

On the other hand, making the summation (4.6)2 + (4.8)2, we easily see that

(a2
11 + a2

12)(a
2
21 + a2

22) =
1
8 ,

which is a contradiction to (4.21).

In case III-(iii), taking an orthonormal frame field {Xi}5
i=1 satisfying (4.2), we

can also derive the equations from (4.4) up to (4.11), thus we have µ = 0. Then,
similarly, we have the equations from (4.12) up to (4.14), so we get in (2.22) that

a = b = 0 and c = 1, and by calculating (4.4)+(4.5), we get λ = β =
√

3
6 . It follows

from (4.4), (4.5) and (4.6) that

a2
11 + a2

12 = 1
2 , a2

21 + a2
22 = 1

2 , a11a21 + a12a22 = 0. (4.22)

Let us put a11 = 1√
2

cos θ1, a12 = 1√
2

sin θ1, a21 = 1√
2

cos θ2 and a22 = 1√
2

sin θ2.

Then 0 = a11a21 + a12a22 = 1
2 cos(θ1 − θ2) implies that θ1 − θ2 = π

2 (2k + 1),
k ∈ Z. Therefore, we have either (a21, a22) = (a12,−a11) or (a21, a22) = (−a12, a11).
If necessary by taking −X2 instead of X2, we are sufficient to consider the case
that a21 = a12 and a22 = −a11.
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From (4.22) and that (aij) ∈ SO(4), we further have

a2
13 + a2

14 = 1
2 , a2

23 + a2
24 = 1

2 , a13a23 + a14a24 = 0.

This implies that, similar to the preceding paragraph, (a23, a24) = (a14,−a13) or
(a23, a24) = (−a14, a13). If a23 = a14 and a24 = −a13, then X2 = −X3, which is
impossible. Thus, a23 = −a14 and a24 = a13 hold.

For simplicity, we put m = − 2
√

6
3 a13a14 and n =

√
6

3 (a2
14 − a2

13). Then m2 +n2 =
1
6 .

Now, from (2.22) we can express {PXi}4
i=1 as follows:



























PX1 = a11ξ + a12U −
√

6
2 nX1 +

√
6

2 mX2 +
√

6
2 mX3 +

√
6

2 nX4,

PX2 = a12ξ − a11U +
√

6
2 mX1 +

√
6

2 nX2 +
√

6
2 nX3 −

√
6

2 mX4,

PX3 = −a12ξ + a11U +
√

6
2 mX1 +

√
6

2 nX2 +
√

6
2 nX3 −

√
6

2 mX4,

PX4 = a11ξ + a12U +
√

6
2 nX1 −

√
6

2 mX2 −
√

6
2 mX3 −

√
6

2 nX4.

(4.23)

Then, applying the Codazzi equation (2.15), we get

(∇X1
A)X3 − (∇X3

A)X1 = 1
6U +

√
6

3 (a11m − a12n)X1 +
√

6
3 (a11n + a12m)X2

+
√

6
3 (a11n + a12m)X3 +

√
6

3 (−a11m + a12n)X4,

(4.24)

(∇X1
A)X4 − (∇X4

A)X1 =
√

6
3 (a11n + a12m)X1 +

√
6

3 (−a11m + a12n)X2

+
√

6
3 (−a11m + a12n)X3 +

√
6

3 (−a11n − a12m)X4.

(4.25)

Let ∇Xi
Xj = ∑ Γk

ijXk with Γk
ij = −Γ

j
ik, 1 ≤ i, j, k ≤ 5. Then, from (4.24) and

(4.25), after calculating the left hand sides of (4.24) and (4.25) respectively, we get

{

Γ1
13 = −

√
2(a11m − a12n), Γ2

13 = −
√

2(a11n + a12m),

Γ1
14 = −

√
2(a11n + a12m), Γ2

14 = −
√

2(−a11m + a12n).
(4.26)

Next, (4.8) gives that g(G(X1 , X2), ξ) =
√

3
3 , and so that g(G(X1 , X2), U) =

0 from (4.11). Then by the relations (2.3)–(2.5) we can easily solve G(X1, ξ) =

−
√

3
3 X2. Thus, by the Gauss and Weingarten formulas, a direct calculation gives

that

G(X1, ξ) = (∇̃X1
J)ξ = −

5

∑
i=1

Γi
15Xi +

√
3

6 X3. (4.27)

Hence, we have

Γ2
15 =

√
3

3 , Γ3
15 =

√
3

6 , Γ1
15 = Γ4

15 = 0. (4.28)
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By (4.26) and (4.28), we obtain







































∇X1
U =

√
3

3 X2 +
√

3
6 X3,

∇X1
X1 = Γ2

11X2 +
√

2(a11m − a12n)X3 +
√

2(a11n + a12m)X4,

∇X1
X2 = Γ1

12X1 +
√

2(a11n + a12m)X3 +
√

2(−a11m + a12n)X4 −
√

3
3 U,

∇X1
X3 = −

√
2(a11m − a12n)X1 −

√
2(a11n + a12m)X2 + Γ4

13X4 −
√

3
6 U,

∇X1
X4 = −

√
2(a11n + a12m)X1 −

√
2(−a11m + a12n)X2 + Γ3

14X3.

(4.29)

Now, using that G(X1, X2) =
√

3
3 ξ and G(X1, ξ) = −

√
3

3 X2, a2
11 + a2

12 = 1
2 and

m2 + n2 = 1
6 , (4.23) and (4.29), by direct calculations of both sides of

2(∇̃X1
P)X2 = JG(X1, PX2) + JPG(X1, X2),

we obtain the following equations:

2X1(a12) + 2
√

2m − 2a11Γ1
12 = 0, (4.30)

−2X1(a11)− 2
√

2n − 2a12Γ1
12 = 0, (4.31)

√
6X1(m) + 2

√
6nΓ1

12 = 0, (4.32)

− 4
√

3
3 a11 +

√
6X1(n)− 2

√
6mΓ1

12 = 0. (4.33)

Then, carrying the computations (4.30) × a12 − (4.31) × a11 and (4.32) × m +
(4.33) × n, respectively, we get

a11n = 0, a12m = 0.

If a11 = 0, we get a2
12 = 1

2 , m = 0 and n2 = 1
6 . Inserting these into (4.32), we

obtain Γ1
12 = 0. Then by (4.31), we have n = 0. This yields a contradiction.

If a11 6= 0, it holds that a2
11 = 1

2 , a12 = 0, m2 = 1
6 and n = 0. Then by (4.30) and

(4.33), we have
√

2m
a11

= Γ1
12 = −

√
2a11
3m . This contradicts to the facts a2

11 = 1
2 and

m2 = 1
6 .

Thus, Case III does not occur.

Case IV. ν = 2.

In this case, we restrict the discussion on a connected component of Ω2. It
is easily seen that we are sufficient, without loss of generality, to consider the
following two subcases:

IV-(i): λ = β > 0, µ ∈ {λ,−λ}.
IV-(ii): λ = β = 0, µ 6= 0.

Actually, for both of the above two subcases, following similar arguments as
in the discussion of Case I from (4.2) up to (4.11), we can also get µ = 0. This is a
contradiction, showing that Case IV does not occur.

We have completed the proof of Lemma 4.1.

Next, we have the following Lemma.
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Lemma 4.2. The case dimD = 2 does not occur either.

Proof. In this case, we denote still by ν, ν ≤ 5, the maximum number of distinct
principal curvatures of M. Then the set Mν = {x ∈ M | M has exactly ν distinct
principal curvatures at x} is a non-empty open subset of M. By the continuity
of the principal curvature function, each connected component of Mν is an open
subset, the multiplicities of distinct principal curvatures remain unchanged on
each connected component of Mν. So we can choose a local smooth frame field
with respect to the principal curvatures.

Now, by assumption Aφ + φA = 0 and Lemma 2.1, we can write (2.16) as:

1
6 g(φX, Y) = g((µI − A)G(X, ξ), Y) + g(G((µI − A)X, ξ), Y)

− 2g(φA2X, Y), X, Y ∈ {U}⊥.
(4.34)

In a connected component of Mν, we take a local orthonormal frame field
{Xi}5

i=1 of M such that

AX1 = λX1, AX2 = βX2, AX3 = −λX3, AX4 = −βX4, AX5 = µX5,

where X3 = JX1, X4 = JX2, X5 = U. Then, taking (X, Y) = (X1, φX1) in (4.34),
with using AX1 = λX1 and AφX1 = −λφX1, we get − 1

6 = 2λ2, this is impossible
and hence, we have proved Lemma 4.2.

Finally, from Lemmas 4.1, 4.2 and the fact that dim D can only be 2 or 4 at
each point of M, we get immediately the assertion of Theorem 1.3.
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