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Abstract

Let R be a commutative ring with identity. We denote by Div(R) the di-
vided spectrum of R (the set of all divided prime ideals of R). By a divspec-
tral space, we mean a topological space homeomorphic with the subspace
Div(R) of Spec(R) endowed with the Zariski topology, for some ring R. A
divspectral set is a poset which is order isomorphic to (Div(R),⊆), for some
ring R. The main purpose of this paper is to provide some topological (resp.,
algebraic) characterizations of of divspectral spaces (resp., sets).

Introduction

The algebraic concepts of G-domains and G-ideals have been introduced by
Kaplansky. Later on, some topological characterizations for G-ideals have been
investigated. Let us recall that p ∈ Spec(R) is a G-ideal if and only if {p} is locally
closed in Spec(R) endowed with its Zariski topology. Moreover, if Spec(R) is lin-
early ordered, then p is a G-ideal if and only if (↓ p) is open, where (↓ p) denotes
the set of primes ideals contained in p.

The aim of the paper is threefold. Firstly, to extend these characterizations
to the more general setting of a linearly ordered poset (X,≤) equipped with T ,
a topology compatible with the order. We prove that if x ∈ X has an immediate
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successor, then {x} is locally closed, and the converse remains true if the topology
T is sober. We also provide an example showing that the condition being sober
is essential.

Next, we give a complete description of Gold(R), the set of G-ideals of R, and
Spec(R), when the latter is linearly ordered with maximal ideal m. Our main tool
is the prime ideal

Jρ =
⋃

[q ∈ Spec(R) : ρ 6∈ q], for ρ ∈ m \ {0}.

We prove that (Jρ)ρ∈m\{0} constitute the set of all non-maximal G-ideals of R.
Thus any non-maximal prime ideal is the intersection of Jρ for ρ varying in an
arbitrarily subset of m \ {0}.

As a second goal of the present paper, we provide new characterizations of
divided domains. Let us recall that a commutative integral domain R is said
to be divided in case each prime ideal p of R is divided; that is p = pR

p
. An

important class of divided integral domains is provided by pseudo-valuation
domains. It is worth noting that these domains were studied by Akiba [1] as
AV-domains (almost Valuation domains) and have been also studied by
Dobbs [7], and Fontana [11].

For a nonzero and nonunit element ρ of a domain R, we denote by

Iρ :=
⋂

n≥1

ρ
nR.

These ideals are related to the notion of “power-Ahmes domains” (or “point-
wise non-Archimedean domains”). Recall that a domain R is said to be pointwise
non-Archimedean if Iρ 6= 0, for all ρ ∈ R \ {0}. For a divided domain R, R is
power-Ahmes if and only if the zero ideal has no immediate successor, see [6].

The ideals Iρ are also related to fragmented domains. Recall that a domain
R is said to be fragmented, if each nonunit and nonzero element of R is divisi-
ble by all positive integral powers of some corresponding nonunit and nonzero
element of R (see [8]). In other words for all r ∈ R \ (U (R) ∪ {0}), there exists
s ∈ R \ (U (R) ∪ {0}) such that r ∈ Is, where U (R) is the set of all unit elements
of R.

We show that a domain R is divided if and only if Spec(R) is linearly ordered
and each Jρ is divided, equivalently, for every nonunit and nonzero element ρ

of R, Rρ is quasi-local with maximal ideal Iρ, where Rρ is the quotient ring of R

with respect to the multiplicative set S = {1, ρ, ρ2, ρ3, . . .}, see Theorem 4.4. We
also prove that Jρ = Iρ if and only if Jρ is divided. As a corollary, we obtain a
complete description of the prime spectrum of divided domains.

It is worth noting that some subspaces of spectral spaces have been character-
ized in [13], [14], [9]. More precisely, in 1969, Hochster [13] showed that a topo-
logical space is homeomorphic to the the subspace of maximal ideals of Spec(R)
if and only if it is a T1 compact space. Two years later, Hochster gave a topo-
logical characterisation of minspectral spaces (spaces which are homeomorphic
to the subspace of minimal prime ideals of a ring). In 2000, Echi [9] provided a
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topological characterization of the Goldman prime spectrum of a commutative
ring.

By a divspectral set, we mean a poset which is isomorphic to (Div(R),⊆),
the set of divided ideals of R. And by a divspectral space, we mean a topolog-
ical space which is homeomorphic to some Div(R) endowed with the topology
inherited by the Zariski topology on Spec(R). Finally as a third goal of the present
paper, we provide some topological characterizations of divspectral spaces and a
complete algebraic characterization of divspectral sets.

It is worth noting that most of the results of this paper have been used in our
recent paper [10].

Throughout this paper “⊂” stands for proper containment and “⊆” for large
containment, all rings considered are commutative with identity.

1 Preliminaries

Let Spec(R) denote the set of all prime ideals of a commutative ring R. The Zariski
topology for Spec(R) is defined by letting C ⊆ Spec(R) be closed if and only if
there exists an ideal a of R such that

C = {p ∈ Spec(R) : a ⊆ p} =: V(a).

This topology has a basis of compact special open sets formed by

D(x) := {p ∈ Spec(R) : x /∈ p} = Spec(R) \ V(xR),

and satisfies the property of compatibility with the inclusion order; that is, for
each prime ideal p, we have

{p} = V(p) = {q ∈ Spec(R) : p ⊆ q}.

According to Hochster [13], a topological space (X, T ) is homeomorphic to
the prime spectrum of a ring equipped with the Zariski topology if and only if
the following properties hold:

• (X, T ) is sober (that is, every nonempty irreducible closed set is the closure
of a unique point).

• (X, T ) is compact.

• The compact open sets form a basis of T .

• The family of compact open sets of X is closed under finite intersections.

Such topological spaces are called spectral spaces.

Now, let us recall the concept of G-ideals and give some topological property
of them.

According to Kaplansky [15], a G-domain is a domain R such that the quotient
field K of R is of the form R[1/t], for some t ∈ R \ {0}. A prime ideal p of a ring
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R is said to be a G-ideal if R/p is a G-domain. It is well known that p is a G-ideal
if and only if {p} is locally closed (i.e., an intersection of an open set and a closed
set) in Spec(R) endowed with the Zariski topology.

A subset S of a topological space X is said to be strongly dense [5] if it meets
every nonempty locally closed set of X. Recall, from the folklore of commuta-
tive algebra, that the set Gold(R) of all G-ideals of a ring R is strongly dense in
Spec(R) [5, 0.2.6.2].

Let (X,≤) be a poset. Following Lewis-Ohm [18], a topology T is said to be

compatible with the order if {x} = (x ↑), where (x ↑) := {y ∈ X : x ≤ y} and
(↓ x) := {y ∈ X : y ≤ x}. The finest topology compatible with the order is called
the Alexandroff topology; it has B := {(↓ x) : x ∈ X} as a basis of open sets. Thus
every open set O of a compatible topology T of a poset is Alexandroff-open.

2 Topological Properties of G-ideals

Let us recall that if Spec(R) is linearly ordered, then p is a G-ideal if and only if
(↓ p) is Zariski-open. We extend this characterization to a linearly ordered poset.
We prove the following:

Lemma 2.1. Let (X,≤) be a linearly ordered poset, T be a topology on X which is
compatible with the order and x ∈ X.

Then the following statements are equivalent.

1. {x} is locally closed.

2. (↓ x) is an open set.

Proof. Assume {x} is locally closed, then there exists an open set U of X such that

{x} = U ∩ {x}. We will show that U = (↓ x).
Indeed, as T is compatible with the order and x ∈ U, we have (↓ x) ⊆ U.

Now let y ∈ U. If we suppose that y /∈ (↓ x), then x < y, and consequently,

y ∈ U ∩ {x}, a contradiction. Therefore U = (↓ x) is open.

Conversely, assume (↓ x) is open, then {x} = {x} ∩ (↓ x) is locally closed.

Remark 2.2. The assumption (X,≤) being linearly ordered is essential in Lemma
2.1. Indeed, in an infinite set X equipped with the co-finite topology, every one-
point set is closed (so locally closed), but no one-point set is open.

Recall that, in a linearly ordered set (X,≤), x < y are said to be adjacent (or
consecutive, or y is an immediate successor of x, or x is an immediate predecessor of y)
if there is no z ∈ X such that x < z < y.

Using purely topological arguments, the next result provides a characteriza-
tion of G-ideals in term of order (in a ring with linearly ordered prime spectrum).
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Theorem 2.3. Let (X,≤) be a linearly ordered poset, T be a topology on X which is
compatible with the order and x ∈ X.

1. If x has an immediate successor, then {x} is locally closed.

2. If in addition T is a sober topology, then the following statements are equivalent.

(i) {x} is locally closed.

(ii) x is maximal or has an immediate successor.

Proof.

(1) Assume x has an immediate successor y; then (↓ x) = X \ {y} is open.
Thus, according to Lemma 2.1, {x} is locally closed.

(2) If x is maximal, then {x} is closed, a fortiori {x} is locally closed. Now,
taking into consideration (1), we obtain the implication (i) =⇒ (ii).

Conversely, assume {x} is locally closed and x non maximal; then X \ (↓ x) is
a nonempty closed set (by Lemma 2.1). But as the set is linearly ordered X \ (↓ x)
is irreducible; so thanks to the sobriety property of T , X \ (↓ x) has a unique
generic point y. Clearly, y is an immediate successor of x.

Remark 2.4. Let (X,≤) be a linearly ordered poset equipped with a topology T
which is compatible with the order. If T is not sober and x ∈ X is locally closed,
then x need not have an immediate successor.

For example, let X := {0} ∪ { 1
n : n is a positive integer} equipped with the

usual order and let T be the topology on X whose open sets are ∅ and the (↓ x),
with x ∈ X. Then, T is an order compatible topology which is not sober, as
X \ {0} is an irreducible closed set with no generic point. Then every point of X
is locally closed, and clearly 0 has no immediate successor.

It is well known that if R is a ring, then Gold(R) is strongly dense in Spec(R)
and that every prime ideal p of R is the intersection of all G-ideals containing p

(see [15, Theorem 26, page 17]). The following theorem provides a topological
result close to this fact.

Theorem 2.5. Let (X,≤) be a poset and T be a topology on X which is compatible with
the order. We denote by Lc(X) the set of all locally closed points of X.

Consider the following statements.

1. Lc(X) is strongly dense in X.

2. For all x ∈ X, if we denote Lcx := {y ∈ Lc(X) : x ≤ y}, then x = inf(Lcx).

Then (1) implies (2). If, in addition, (X,≤) is linearly ordered, then (1) and (2) are
equivalent.

Proof. (1) =⇒ (2). Let a be a lower bound of Lc(X). Assume a 
 x; then

x ∈ X \ {a}. So {x} ∩ (X \ {a}) is a nonempty locally closed set of X. Thus

{x} ∩ (X \ {a}) ∩ Lc(X) 6= ∅.
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Consequently, there exists b ∈ Lc(X), such that b ∈ {x} and b ∈ X \ {a}; this
implies that a 
 b, contradicting the fact that a is a lower bound of Lc(X).

Therefore, a ≤ x, and so x = inf(Lcx).
Conversely, assume (X,≤) is linearly ordered. Assume (2) holds. Let us show

that Lc(X) is strongly dense in X.
Indeed, let L = O ∩ C be a nonempty locally closed set of X, where O is an

open set and C is a closed set. Let x ∈ L, we will show that {x} ∩O meets Lc(X).

– If {x} ∩ O = {x}, then x ∈ Lc(X).

– Now, assume {x} ∩ O 6= {x}. Then there exists y 6= x such that y ∈ {x} ∩
O 6= {x}. As x = inf(Lcx) and x < y, there exists z ∈ Lcx) such that y 
 z. So

z < y; hence z ∈ {x} ∩ (↓ y). But as O is open and the topology is compatible
with the order, O is Alexandroff-open, and consequently (↓ y) ⊆ O. It follows

that z ∈ ({x} ∩ O)∩ Lc(X). We conclude that Lc(X) is strongly dense in X.

3 G-ideals in a ring with linearly ordered spectrum

Let R be a domain, ρ be a nonzero and non invertible element of R and

S = {1, ρ, ρ
2, ρ

3, . . . , ρ
n, . . .},

we denote by Rρ the quotient ring of R with respect to the multiplicative set S.
For a ring R with linearly ordered prime spectrum, and maximal ideal m, and

ρ ∈ m \ {0}, we denote by Jρ the union of all prime ideals of R not containing ρ,
that is,

Jρ =
⋃

[q ∈ Spec(R) : ρ 6∈ q].

Proposition 3.1. Let (R,m) be a domain with linearly ordered prime spectrum, p be a
non maximal prime ideal of R. Then the following statements are equivalent.

1. Rp = Rρ, for some ρ ∈ m \ {0}.

2. There exists ρ ∈ m \ p such that p = Jρ.

3. D(ρ) = (↓ p), for some ρ ∈ m \ p.

4. (↓ p) is open in Spec(R).

We need the following lemma.

Lemma 3.2 ([19, Proposition 2.1]). Let R be a domain, p be a prime ideal of R and
ρ ∈ R \ p. Then the following statements are equivalent.

1. Rp = Rρ.

2. For each b ∈ R \ p, ρ ∈
√

bR.

3. If q ∈ Spec(R) such that q * p, then ρ ∈ q.

4. D(ρ) = (↓ p).
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Proof of Proposition 3.1. As Spec(R) is linearly ordered, Lemma 3.2 guarantees the
equivalences

(1) ⇐⇒ (2) ⇐⇒ (3).

(3) =⇒ (4). Straightforward.
(4) =⇒ (3). Assume (↓ p) is open in Spec(R); then it is compact. Hence there

exist x1, x2, . . . , xn ∈ R such that

(↓ p) = D(x1) ∪D(xn) . . . ∪D(xn).

But, as the ideals
√

xiR are comparable, the D(xi)s are also comparable. It follows
that (↓ p) = D(ρ), for some ρ ∈ m \ {0}; and consequently p = Jρ, for some ρ.

Combining Lemma 2.1 and Proposition 3.1, one may check easily the follow-
ing corollary.

Corollary 3.3. Let (R,m) be a domain with linearly ordered prime spectrum and p ⊂ q

are prime ideals of R, then the the following statements are equivalent.

1. p ⊂ q are consecutive.

2. There exists ρ ∈ q \ p, such that p = Jρ and q =
√

ρR.

The following result gives a complete description of Gold(R) and Spec(R)
when the latter space is linearly ordered.

Theorem 3.4. Let R with linearly ordered prime spectrum, and m its maximal ideal.
Then the following properties hold.

1. Gold(R) = {Jρ : ρ ∈ m \ {0}} ∪ {m}.

2. Spec(R) = {m}
⋃







⋂

ρ∈T

Jρ : ∅ 6= T ⊂ m \ {0}







.

Proof.
(1) Let p be a nonmaximal G-ideal, then by Lemma 2.1, (↓ p) is open in

Spec(R). Hence, according to Proposition 3.1, there exists ρ ∈ m \ p such that
p = Jρ.

Conversely, if ρ ∈ m \ {0}, then (↓ Jρ) = D(ρ); therefore according to Lemma
2.1 Jρ ∈ Gold(R).

(2) Let p be a nonmaximal prime ideal of R. We claim that p =
⋂

ρ∈m\p
Jρ.

Indeed, we know that p is the intersection of all G-ideals containing p; so by

Fact (1), p = ∩{Jρ : p ⊆ Jρ}. This yields p =
⋂

ρ∈m\p
Jρ.

Conversely, if ∅ 6= T ⊂ m, then
⋂

ρ∈T

Jρ is in Spec(R), by [15, Theorem 9,

page 6].
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4 Divided Ideals

The following result provides the structure of some divided prime ideals.

Proposition 4.1. Let p be a prime ideal of a domain R. Assume there exists a nonunit
element of R not contained in p. If we let NU (R) be the set of all nonunit elements of R,

then p is divided if and only if p =
⋂

ρ∈NU (R)\p
Iρ.

Proof.
• Assume p is a divided prime ideal; then it is comparable to any principal ideal
of R. So, if ρ ∈ NU (R) \ p, we have p ⊆ ρnR, for all n ≥ 1. This leads to p ⊆ Iρ;

and consequently p ⊆
⋂

ρ∈NU (R)\p
Iρ.

Conversely, if x ∈
⋂

ρ∈NU (R)\p
Iρ and x /∈ p, then x ∈ Ix, a contradiction.

• Now, suppose that p =
⋂

ρ∈NU (R)\p
Iρ. It is enough to establish the containment

pRp ⊆ p.
For, let x ∈ p and s ∈ R \ p. Hence p ⊆ Is ⊆ sR. Thus there exists r ∈ R such

that x = sr. But as x ∈ p and s /∈ p, we get r ∈ p. It follows that
x

s
= r ∈ p. This

yields pRp ⊆ p. Therefore p is divided.

The following result compares the ideals Iρ and Jρ and provides an answer
to the problem when they are equal.

Proposition 4.2. Let R be a domain with linearly prime spectrum and m be its maximal
ideal. For ρ ∈ m \ {0}, the following properties hold.

1. Iρ ⊆ Jρ.

2. Jρ = Iρ if and only if Jρ is divided.

First, we establish a technical lemma.

Lemma 4.3. Let R be a domain with linearly ordered prime spectrum and m be its max-
imal ideal. If ρ ∈ m \ {0}, then

Jρ = {x ∈ R : for all n ≥ 0, x does not divide ρ
n}.

Proof. We let p = Jρ and S = {1, ρ, ρ2, ρ3, . . . , ρn, . . .}. First, we will show that

S−1p ∩ R = p. Indeed, p ⊆ S−1p ∩ R and S−1p ∩ R is a prime ideal of R not
containing ρ. Hence, as p is the largest prime ideal of R not containing ρ, we
obtain S−1p∩ R = p. Now, by Gilmer [12, Corollary 5.2], as S−1p∩ R = p, the set
R \ p is the saturation of the multiplicative set S. But the saturation of S is given
by

S = {x ∈ R : xy ∈ S, for some y ∈ R}

= {x ∈ R : x divides ρn for some n ≥ 0}.

It follows that

p = {x ∈ R : for all n ≥ 0, x does not divide ρ
n}.
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Proof of Proposition 4.2. Again, we let p = Jρ.

(1) By Proposition 3.1, Rp = Rρ. If we let S = {1, ρ, ρ2, . . . ρn, . . .}, then S−1p is the

maximal ideal of S−1R = Rρ. As Iρ ∩ S = ∅, the ideal S−1Iρ survives in S−1R.

Thus S−1Iρ ⊆ S−1P, this leads to Iρ ⊆ p.
(2) Suppose that p is divided; then as ρn /∈ p, for all n ≥ 1, we obtain p ⊆ ρnR.
Hence p ⊆ Iρ; and consequently, p = Iρ.

Conversely, assume p = Iρ; and let x ∈ R \ p. So, by Lemma 4.3, x | ρn0 , for
some n0 ≥ 0.

If y ∈ p, then as p = Iρ, ρn0 | y. This yields x | y. Therefore p ⊆ xR. Thus p is
comparable with every principal ideal of R. It follows that p is divided.

The main result in this section is the following

Theorem 4.4. Let R be a domain; then the following statements are equivalent.

1. For all ρ ∈ NU (R), Rρ is quasi-local with maximal ideal Iρ.

2. Spec(R) is linearly ordered with maximal ideal m, and for each ρ ∈ m \ {0},
Jρ is divided.

3. Spec(R) is linearly ordered with maximal ideal m, and for each ρ ∈ m \ {0},
Jρ = Iρ.

4. R is a divided domain.

Proof.
(1) =⇒ (2). Let us show that Spec(R) is linearly ordered. By [3, Theorem 1], it
suffices to show that the radicals of any two principal ideals are comparable.

If ρ is a nonunit element of R; then as Iρ is the unique maximal ideal of Rρ,
Iρ is a prime ideal of R and RIρ

= Rρ, by [12, Corollary 5.2].

Now, let ρ1, ρ2 be nonunit elements of R. Assume
√

ρ1R *
√

ρ2R, then

ρ1 /∈
√

ρ2R; a fortiori ρ1 /∈ Iρ2 . But as RIρ2
= Rρ2 we deduce, by Lemma 3.2

(3), that ρ2 ∈
√

ρ1R. Therefore,
√

ρ2R ⊆
√

ρ1R.
We conclude that Spec(R) is linearly ordered. Letting m be the maximal ideal

of R, we deduce that for each ρ ∈ m \ {0}, we have RJρ
= Rρ (by Lemma 3.2).

Hence RIρ
= RJρ

= Rρ, and consequently Jρ = Iρ. It follows that Jρ is divided,
by Proposition 4.2.
(2) =⇒ (3). Follows immediately from Proposition 4.2.
(3) =⇒ (4). Combining Theorem 3.4, Proposition 4.2 and taking into considera-
tion the fact that any intersection of divided prime ideals is divided, we deduce
that every prime ideal of R is divided, and consequently R is a divided domain.
(2) =⇒ (1). Let ρ be a nonunit element of R; then by Kaplansky [15, Theorem
11, page 6] p = ∪[q ∈ Spec(R) : ρ /∈ q] is a prime ideal of R. As (↓ p) = D(ρ),
by Lemma 3.2, we get Rp = Rρ and p has an immediate successor. So, by our
assumption, p is divided. Again by Proposition 4.2, we deduce that p = Iρ, this
implies that Iρ is the maximal ideal of Rρ.
(3) =⇒ (2). Straightforward.
(4) =⇒ (1). Assume R is a divided ring with maximal ideal m; then for each
ρ ∈ m \ {0}, Jρ = Iρ by Proposition 4.2. But as Rρ = RJρ

= RIρ
, Rρ is quasi-local

with maximal ideal IρRIρ
= Iρ.
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The following theorem gives the structure of prime ideals of a divided
domain.

Corollary 4.5 (The Prime Spectrum of Divided Domains). Let R be a divided domain
with maximal ideal m, then

Spec(R) = {m}
⋃







⋂

ρ∈T

Iρ : ∅ 6= T ⊂ m \ {0}







.

Proof. According to Proposition 4.1, we have

Spec(R) ⊆ {m}
⋃







⋂

ρ∈T

Iρ : ∅ 6= T ⊂ m \ {0}







.

Conversely, as in a divided domain R, every Iρ is prime (see Theorem 4.4 (3))
and Spec(R) is linearly ordered, we deduce, using [15, Theorem 9, page 6], that
any intersection of a family of Iρ is a prime ideal of R.

5 Spectral Properties of Divided Ideals

Recall that a poset (X,≤) is said to be a spectral set if it is order isomorphic to
(Spec(R),⊆), for some commutative ring R with identity.

A poset (X,≤) is said to satisfy the conditions

(K1) if every chain in X has a supremum (sup) and an infimum (inf) [first
Kaplansky’s condition];

(K2) if for each x < y in X, there exist two consecutive elements x1 < x2 of X
such that x ≤ x1 < x2 ≤ y [second Kaplansky’s condition].

In [15, Theorems 9, 11, page 6] Kaplansky showed that (Spec(R),⊆) satisfies
conditions (K1) and (K2). The converse does not hold, as shown by Lewis-Ohm
in [18, Example 2.1].

Definition 5.1. Let R be a ring; we denote by Div(R) the divided spectrum of R;
that is the set of all divided prime ideals of R. By a divspectral set we mean a poset
which is isomorphic to (Div(R),⊆), for some commutative ring R with identity.

The following result gives a complete characterization of divspectral sets.

Theorem 5.2. Let (X,≤) be a poset. Then the following statements are equivalent.

1. (X,≤) is divspectral.

2. (X,≤) is linearly ordered and satisfies (K1) and (K2).

3. (X,≤) is linearly ordered spectral set.
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4. There exists a valuation domain V such that (X,≤) is order isomorphic to
(Spec(V),⊆).

Before showing this theorem, let us recall a result due to Lewis [17].

Lemma 5.3 ([17, Corollary 3.6]). Let (X,≤) be a poset; then (X,≤) is a linearly or-
dered set satisfying conditions (K1) and (K2) if and only if there is a valuation ring V
such that (Spec(V),⊆) is order isomorphic to (X,≤).

Proof of Theorem 5.2. As (4) =⇒ (1) is clear and (2), (3), (4) are equivalent (by
Lewis [17, Corollary 3.6], it is enough to show the implication (1) =⇒ (2).

As (Div(R),⊆) is linearly ordered, it suffices to show that it satisfies (K1) and
(K2).

Indeed, let (pi, i ∈ I) be a linearly ordered family of divided ideals of R; then

by [15, Theorems 9, 11, page 6], the ideals p =
⋂

i∈I

pi and q =
⋃

i∈I

pi are primes. It

remains to show that they are divided.
For, let x ∈ R \ p; then there exists i0 ∈ I such that x /∈ pi0 . As pi0 is divided,

we deduce that pi0 ⊆ xR. Thus, a fortiori, p ⊆ xR, showing that p is divided.
Now, let x ∈ R \ q; then for all i ∈ I x /∈ pi. As pi is divided, we deduce that

pi ⊆ xR. Thus, q ⊆ xR, and consequently, showing that q is divided.
The proof of (K2) is similar to that of Kaplansky[15, Theorem 11, page 6].

Now, we will investigate topological properties of the divided spectrum of a
ring.

Definition 5.4. A divspectral space is a topological space which is homeomorphic
to some Div(R) endowed with the topology inherited by the Zariski topology on
Spec(R).

Next, we provide a topological characterization of divspectral spaces.

Theorem 5.5. Let (X, T ) be a topological space and ≤ be the quasi-order defined by T
(i.e., x ≤ y iff y ∈ {x}); then the following statements are equivalent.

1. X is a divspectral space.

2. T is spectral and ≤ is a linear order.

3. (X, T ) is homeomorphic to the prime spectrum of valuation ring.

4. T is compact and ≤ is a linear order and X is totally disconnected in its order
topology.

We break the proof into a sequence of lemmata.

Lemma 5.6. Let R be a ring with linearly ordered spectrum. Then

B := {(↓ p) : p ∈ Gold(R)}

is a basis of the of the Zariski topology on Spec(R).



464 O. Echi – A. Khalfallah

Proof. Let m be the maximal ideal of R and x ∈ m \ {0}; then D(x) = (↓ Jx).
So as m and Jx belong to Gold(R), we deduce that {D(x) : x ∈ R − {0}} ⊂
{(↓ p) : p ∈ Gold(R)}.

Conversely, let p ∈ Gold(R).
– If p = m, then (↓ p) = Spec(R) = D(1).
– If p ⊂ m, then by Theorem 3.4, there exists x ∈ m such that p = Jx and so

(↓ p) = D(x).
It follows that

B := {(↓ p) : p ∈ Gold(R)}
is a basis of the Zariski topology on Spec(R).

Corollary 5.7 ([13]). If (X,≤) is a linearly ordered poset, then there exists at most one
spectral topology on X which is compatible with the order.

Proof. By Lemma 5.6, if there is a spectral topology T on X compatible with the
order, then

B := {(↓ x) : x is a locally closed in X}
is a basis of T . But, by Lemma 2.3, locally closed points x of X are such that x is
maximal or has an immediate successor.

It follows that the topology T is determined by the order.

Lemma 5.8. Let R be a ring, then Div(R) endowed with the topology inherited by the
Zariski topology on Spec(R) is a spectral space.

Proof. By Theorem 5.2, Div(R) is a linearly ordered set satisfying (K1) and (K2);
so it has greatest element m. Therefore, Div(R) is a T0-compact space, as the
topology is compatible with the order.

• Clearly, the collection B := {D(x) ∩ Div(R) : x ∈ R} is a basis of open sets
of Div(R) closed under finite intersections.

Let us verify that D(x) ∩ Div(R) is compact, one may assume that it is none-
mpty. We let

q =
⋃

[p ∈ Div(R) : x /∈ p},

then q is the greatest element of D(x) ∩ Div(R). It follows that D(x) ∩ Div(R) is
compact.

• It remains to show that Div(R) is sober.
Let C be an irreducible closed set of Div(R); then C = Div(R) ∩ F, where F is

a closed set of Spec(R). We denote by p =
⋃

[q : q ∈ C]. Then p ∈ Div(R).
Assume p /∈ F. Then, as every element of F is comparable to p, we get

F ⊂ (p ↑). We claim that F is irreducible in Spec(R). For, let U, V be two open
sets of Spec(R) such that U ∩ F and V ∩ F are nonempty. Pick p1 ∈ U ∩ F and
p2 ∈ V ∩ F, then p ⊂ p1 and p ⊂ p2. As p is the intersection of all elements of
C, we deduce that there are q1, q2 in C such that p ⊂ q1 ⊆ p1 and p ⊂ q2 ⊆ p2.
Comparing q1 and q2, one may assume for instance that q1 ⊆ q2; but as U, V are
downsets, we deduce that q1 ∈ U ∩V ∩ F. This shows that every nonempty set of
F is dense, consequently F is irreducible. Therefore F has a generic point t; that is
to say F = (t ↑). It follows that p ⊆ t. Thus as C ⊆ F = t, and p is the intersection
of all elements of C, we get p = t, a contradiction.
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We conclude that p /∈ F, and consequently, F = (p ↑), and C = {p} ∩ Div(R),
showing that C has a generic point.

Lemma 5.9. Let R1, R2 be rings with linearly ordered spectra; and ϕ : Spec(R1) −→
Spec(R2) be an order isomorphism, then ϕ is a homeomorphism when the spectra are
endowed with their Zariski topologies.

Proof. As ϕ−1 is also an isomorphism, it is enough to show that ϕ is continuous.
Let mi be the maximal ideal of Ri.

We will show that for each q ∈ Gold(R2), ϕ−1(q) ∈ Gold(R1). Indeed, we
consider two cases.

– If q = m2, then ϕ−1(q) = m1 ∈ Gold(R1).
– If q ⊂ m2, then by Theorem 2.3 q has an immediate successor q1. As ϕ

is also an isomorphism, ϕ−1(q1) is the immediate successor of ϕ−1(q). Hence
ϕ−1(q) ∈ Gold(R1), by Theorem 2.3.

Now, since ϕ−1(↓ q) = (↓ ϕ−1(q)), we deduce, thanks to Lemma 5.6, that ϕ is
continuous.

Proof of 5.5. Firstly, note that by Hochster [13, Proposition 13], we have
(2) ⇐⇒ (4).

(1) =⇒ (2). Follows from Lemma 5.8.

(2) =⇒ (3). Assumption (2) implies that (X,≤) is a spectral linearly ordered
set. Hence by Lewis [17, Corollary 3.6], there exists a valuation ring V such that X
is order isomorphic to Spec(V). So, according to Lemma 5.9, X is homeomorphic
to Spec(V) equipped with the Zariski topology.

(3) =⇒ (1). Straightforward, as a valuation domain is divided.
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