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Abstract

In this paper, we introduce a family of drift exponentially fitted stochastic
Runge-Kutta (DEFSRK) methods for multi-dimensional Itô stochastic differ-
ential equations (SDEs). For the presented class of DEFSRK methods, the
regions of mean-square stability (MS-stability) are obtained with reasonable
results. Also, general order conditions for the coefficients and the random
variables of the DEFSRK methods are extracted. Then, a set of order con-
ditions for a subclass with stochastic weak second order is obtained. Some
numerical examples are presented to establish the efficiency and accuracy of
the new schemes.

1 Introduction

In many fields like theoretical physics, epidemiology and mathematical finance
where random effects are crucial, SDEs appear to be used for mathematical
modelling [10, 16]. Since analytical solutions of SDEs are not generally avail-
able, numerical methods are an important tool for the calculation of approximate
solutions of SDEs. Therefore, the development of numerical methods for the
approximation of SDEs is increasing nowadays. There are two approaches to
measure the accuracy of a numerical solution of an SDE, namely weak and strong
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approximation. For the approximation of moments of the solution process,
numerical methods converging in the weak sense have to be applied
[1, 2, 16, 20–22]. On the other hand, in the strong approximation or pathwise
approximation, the trajectories of the numerical solutions must be sufficiently
close to the exact solution [3,6,9,16,24]. Above mentioned numerical approxima-
tions include explicit or implicit schemes. As we know, using implicit methods
for stiff SDEs, like stiff ODEs, causes to achieve more suitable stability proper-
ties. But, a straightforward formulation of a fully implicit scheme for SDEs often
causes the problem of being stochastically unstable [16]. Therefore, in order to
develop the region of MS-stability, some studies have been presented for solving
SDEs numerically [3, 5, 12, 26]. In looking for effective numerical methods, one of
the ideas in ODEs to extract the high order methods with good stability properties
is to use the exponentially fitted Runge-Kutta (EFRK) methods [7,8,19,27–29], and
the first theoretical principles of this technique was introduced by Gautschi [13]
and Lyche [17]. Thus, in this paper by utilizing this idea we use the stochastic
Runge-Kutta (SRK) methods of [23] and then construct the new methods. Since
we use the exponentially fitting for deterministic part of the scheme, the new
methods are called drift exponentially fitted stochastic Runge-Kutta (DEFSRK).
For a subclass of proposed methods with stochastic weak second order, suitable
parameters of MS-stability will be obtained and those regions will be displayed.

The outline of this study is as follows. In Section 2, some definitions and pre-
liminary requirements will be stated. In Section 3, DEFSRK methods will be
formulated and their general order conditions will be obtained. Then, a class
of DEFSRK methods with stochastic weak second order for d-dimensional SDEs
with multi-dimensional noise will be illustrated in Section 4. Also, in this Section,
we discuss the concepts of MS-stability for solutions of SDEs and for numerical
approximations and then a stochastic weak second order DEFSRK method which
is named DEFSRK5, will be introduced. In Section 5, some numerical examples
are considered to justify our theoretical results.

2 Some definitions and preliminary requirements

In this section, we provide a brief explanation for exponentially fitted Runge-
Kutta methods and stochastic B-series. In the following, we consider the equidis-
tant discretization Ih = {0 ≤ t0 < t1 < ... < tN = T } of the time interval

[t0, T ] with stepsize h = T −t0
N and tj = t0 + jh for j = 0, 1, ..., N and time discrete

approximation yt, t ∈ Ih. We also apply yn instead of ytn .

2.1 Exponentially fitted Runge-Kutta methods

If we consider ODE

dXt = g0(t, Xt)dt, Xt0 = x0 ∈ R, (2.1)
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then the standard s-stage Runge-Kutta method for solving this ODE can be
formulated as follows:

yn+1 = yn + h
s

∑
i=1

big0(tn + cih, Hi), (2.2)

Hi = yn + h
s

∑
j=1

aijg0(tn + cjh, Hj), i = 1, ..., s. (2.3)

The method (2.2)-(2.3) can be associated with the operator

(Lz)(t) = z(t + h)− z(t)− h
s

∑
i=1

biz
′(t + cih, Zi), (2.4)

Zi = z(t) + h
s

∑
j=1

aijz
′(t + cjh, Zj), i = 1, ..., s. (2.5)

in which, z is a continuously differentiable function. We now express the follow-
ing definition from [4].

Definition 2.1. The method (2.4)-(2.5) is called exponential of order p if the related
linear operator L vanishes for any linear combination of the linearly independent func-
tions ew0t, ew1t, ..., ewpt in which wi, i = 0, 1, ..., p are real or complex numbers.

So, if we take z(t) = ewjt, j = 0, 1, ..., p then we have

ewj(t+h) − ewjt − h
s

∑
i=1

biwje
wj(t+cih) = 0,

therefore we obtain

ewjh − 1 − hwj

s

∑
i=1

bie
wjcih = 0,

now, if one puts θj = wjh then one obtains

eθj − 1 − θj

s

∑
i=1

bie
θjci = 0, j = 0, 1, ..., p.

Remark 2.2. Generally, one takes θi = wih that wi, i = 0, 1, ..., p are real or complex
numbers, but in this paper, to achieve more appropriate methods with suitable determin-
istic order, we set θi = wih

2.

Therefore, different choices of values θi cause to create various exponentially
fitted Runge-Kutta (EFRK) methods. For more details about EFRK methods see
[13,17]. In [18] and [19], the authors have proposed the following generalized RK
methods to solve the ODEs

yn+1 = yn + h
s

∑
i=1

bi(θ)g0(tn + cih, Hi),

H1 = yn, Hi = ηi(θ)yn + h
i−1

∑
j=1

aij(θ)g0(tn + cjh, Hj), i = 2, ..., s.
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To design a new efficient method to solve the SDEs, we utilize the EFRK’s idea
and the above idea in a general form. As previously mentioned, and also accord-
ing to the references considered, one of the advantages of using the EFRK method
is that it makes it possible to obtain a method with better stability properties. So,
in the next sections, we try to extend this idea to SDEs in order to achieve good
MS-stability properties.

2.2 Stochastic B-series

Let (Ω,F , P) be a probability space with a filtration (Ft)t≥0 and take I = [t0, T ]
for some 0 ≤ t0 < T < ∞. In the following, for more simplicity, we suppose that
(Xt)t∈I is the solution of the d-dimensional Itô SDE system in autonomous form

dXt = g0(Xt)dt +
m

∑
l=1

gl(Xt)dW l
t , Xt0 = x0, (2.6)

where gl : Rd → Rd for l = 0, 1, ..., m and {Wt = (W1
t , ..., Wm

t )}t≥0 is an
m-dimensional Wiener process. We assume that the Borel-measurable coefficients
gl fulfill the usual conditions, i.e. those are sufficiently differentiable and satisfy
a Lipschitz and a linear growth condition such that the existence and uniqueness
theorem [16] are applicable. Also, for convenience, we consider W0

t = t, then (2.6)
can be exhibited as

dXt =
m

∑
l=0

gl(Xt)dW l
t , Xt0 = x0. (2.7)

In the following we consider the set of families of measurable mappings denoted
by Ξ

Ξ := {{ϕ(h)}h≥0 : ϕ(h) : Ω → R is F − B − measurable ∀h ≥ 0}, (2.8)

and let Ξ0 be its subset defined by

Ξ0 := {{ϕ(h)}h≥0 ∈ Ξ : ϕ(0) ≡ 0}. (2.9)

We now state some definitions related to colored rooted trees theory from [9].

Definition 2.3. The set of m + 1-colored rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Tm

is recursively defined by:

i) The graph •l = [∅]l with only one vertex of color l belongs to Tl. Let τ = [τ1, τ2, . . . ,
τk]l be the tree formed by joining the subtrees τ1, τ2, . . . , τk each by a single branch
to a common root of color l.

ii) If τ1, τ2, . . . , τk ∈ T then τ = [τ1, τ2, . . . , τk]l ∈ Tl .

Therefore, Tl is the set of trees with an l-colored root, and T is the union of these
sets.
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Definition 2.4. For a tree τ ∈ T the elementary differential is a mapping
F(τ) : Rd → Rd defined recursively by:

i) F(∅)(x0) = x0

ii) F(•l)(x0) = gl(x0)

iii) If τ = [τ1, τ2, . . . , τk]l ∈ Tl then

F(τ)(x0) = g
(k)
l (x0) (F(τ1)(x0), F(τ2)(x0), . . . , F(τk)(x0)).

Definition 2.5. Given a mapping φ : T → Ξ satisfying

φ(∅) ≡ 1 and φ(τ)(0) = 0, ∀τ ∈ T \ {∅}. (2.10)

A (stochastic) B-series is then a formal series of the form

B(φ, x0; h) = ∑
τ∈T

α(τ).φ(τ)(h).F(τ)(x0), (2.11)

where α : T → Q is given by

α(∅) = 1, α(•l) = 1, α(τ = [τ1, τ2, . . . , τk]l) =
1

r1!r2! · · · rq!

k

∏
j=1

α(τj),

(2.12)
where r1, r2, . . . , rq count equal trees among τ1, τ2, . . . , τk.

In the next lemma it is established that if Y(h) can be written as a B-series, then
f (Y(h)) can also be written as a same series, in which the sum is taken over trees
with a root of color f and subtrees in T. The lemma is essential for extracting
B-series for the exact and the numerical solution. Also, it can be used for obtain-
ing weak convergence results.

Lemma 2.6. If Y(h) = B(φ, x0; h) is some B-series with φ(∅) ≡ 1 and f ∈ C∞(Rd, Rd̂)
then f (Y(h)) can also be expressed as a formal series of the form

f (Y(h)) = ∑
u∈U f

β(u).ψφ(u)(h).G(u)(x0), (2.13)

where U f is a set of trees derived from T by

i) [∅] f ∈ U f , and τ1, τ2, . . . , τk ∈ T then [τ1, τ2, . . . , τk] f ∈ U f ,

ii) G([∅] f )(x0) = f (x0) and

G(u = [τ1, τ2, . . . , τk] f )(x0) = f (k)(x0) (F(τ1)(x0), F(τ2)(x0), . . . , F(τk)(x0)),

iii) β([∅] f ) = 1 and β(u = [τ1, τ2, . . . , τk] f ) = 1
r1!r2!···rq! ∏

k
j=1 α(τj) where

r1, r2, . . . , rq count equal trees among τ1, τ2, . . . , τk,

iv) ψφ([∅] f ) ≡ 1 and ψφ(u = [τ1, τ2, . . . , τk] f )(h) = ∏
k
j=1 φ(τj)(h).

Proof. See Lemma 2.1 of [9] or Lemma 3 in [10].
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As a first result we can utilize Lemma 2.6 to function gl: if Y(h) = B(φ, x0; h) then

gl(Y(h)) = ∑
τ∈Tl

α(τ).φ′
l(τ)(h).F(τ)(x0) (2.14)

where

φ′
l(τ)(h) =

{
1 τ = •l ,

∏
k
j=1 φ(τj)(h) τ = [τ1, τ2, . . . , τk]l ∈ Tl.

(2.15)

Definition 2.7. The order of a tree τ ∈ U f is defined by

ρ(τ) =





0 τ = ∅,

∑
l
i=1 ρ(τi) τ = [τ1, τ2, . . . , τl] f

∑
l
i=1 ρ(τi) + χ{k=0} +

1
2χ{k 6=0} τ = [τ1, τ2, . . . , τl]k

(2.16)

where χ is the indicator function.

The next theorem expressed that the exact solution Xt0+h can be formulated as
B-series.

Theorem 2.8. The solution Xt0+h of (2.7) can be written as a B-series of the form
B(ϕ, x0; h) with

ϕ(∅) ≡ 1, ϕ(•l)(h) = W l
h, ϕ(τ = [τ1, τ2, . . . , τk]l)(h) =

∫ h

0

k

∏
j=1

ϕ(τj)(s)dW l
s .

(2.17)

Proof. See Theorem 5 of [10] or Theorem 2 of [11].

3 DEFSRK methods for SDEs

Recently, some effective stochastic Runge-Kutta methods have introduced in
[20, 21, 23–25]. In this section, we propose the following drift exponentially
fitted stochastic Runge-Kutta methods for solving the SDE (2.7):

yn+1 = yn +
s

∑
i=1

m

∑
k=0

M

∑
ν=0

z
(k,ν)
i (θ)gk(H

(k,ν)
i ) (3.1)

for n = 0, 1, ...N − 1 , with the stage values

H
(k,ν)
i = η

(k,ν)
i (θ)yn +

s

∑
j=1

m

∑
r=0

M

∑
µ=0

Z
(k,ν)(r,µ)
ij (θ)gr(H

(r,µ)
j ) (3.2)

for i = 1, ..., s, in which θ = wh2, w ∈ R and z(k,ν)(θ) ∈ Ξs
0, Z(k,ν)(r,µ)(θ) ∈ Ξ

s,s
0 , for

k, r = 0, 1, ..., m and µ, ν = 0, 1, ..., M, moreover, for convenience and obtaining a
numerical method with a desired weak order p we put

η(k,ν)(θ) = es + γ(k,ν)(θ)
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where es = (1, . . . , 1)⊤ ∈ Rs, γ(k,ν)(θ) ∈ Ξs
0, and also

Ξs := {{ϕi(h)}s
i=1 : h ≥ 0, ϕi(h) : Ω → R is F − B − measurable ∀h ≥ 0},

and Ξs
0 is its subset that is defined by

Ξs
0 := {{ϕi(h)}s

i=1 ∈ Ξs : h ≥ 0, ϕi(0) ≡ 0, 1 ≥ i ≥ s}.

Ξ
s,s
0 is defined in the same way to include two-dimensional arrays

{ϕi(h), ϕj(h)}s
i,j=1. With the above notations, for θ = 0, DEFSRK methods (3.1)-

(3.2) coincide with those of standard s-stage SRK methods [23].
For the simplicity of using of stochastic B-series theory, one can rewrite (3.1)-(3.2)
in a more compact form as below (see [10]):

yn+1 = yn +
m

∑
k=0

M

∑
ν=0

(z(k,ν)(θ)
⊤ ⊗ Id)gk(H(k,ν)) (3.3)

for n = 0, 1, ...N − 1 in which Id ∈ Rd,d is the identity matrix, and

H(k,ν) = η(k,ν)(θ)⊗ yn +
m

∑
r=0

M

∑
µ=0

(Z(k,ν)(r,µ)(θ)⊗ Id)gr(H(r,µ)) (3.4)

where

H(k,ν) := (H
(k,ν)
1 , H

(k,ν)
2 , . . . , H

(k,ν)
s )⊤, (3.5)

gk(H(k,ν)) :=
(

gk(H
(k,ν)
1 )⊤, . . . , H

(k,ν)
s )⊤

)⊤
. (3.6)

Since, Taylor series expansion of the numerical solution includes additional

parameters γ(k,ν)(θ) which are coefficients of yn in the stage values, we use node
τy, as an empty tree, for corresponding terms consisting of these coefficients. For
instance, the Ith component of g0

′y is

(g0
′(y))I =

d

∑
J=1

∂g0
I

∂Xt
J
yJ

that appears in Taylor expansion and corresponds to tree ([τy]0). As we stated
above, for computing the order of trees we consider τy as an empty tree with

weight γ(k,ν)(θ). The order of τy should correspond to the h-order contributed to

the weights by τy. As the weight of τy is given by γ(k,ν)(θ) with γ(k,ν)(θ) = O(θ)

and θ = O(h2), we conclude that ρ(τy) = 2. Thus, we reform the definition of the
order of tree with slight change:

ρ(τ) =





0 τ = ∅

2 τ = τy

∑
l
i=1 ρ(τi) τ = [τ1, τ2, . . . , τl] f

∑
l
i=1 ρ(τi) + χ{k=0} +

1
2χ{k 6=0} τ = [τ1, τ2, . . . , τl]k
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For example, the order of tree [τy, [τy, τ0]2]0 is 13
2 because it has 2 nodes τy,

2 deterministic nodes τ0 and one stochastic node τ2. Based on what was said,
in the Taylor series expansion of the numerical solution we have two terms; the
terms which correspond to trees containing at least one node τy and second terms
associated with other nodes. Thus, we consider two sets of color rooted trees;
the first are trees that consist of at least one node τy and denoted by Ty and
the second are trees which have no node τy that was described in Definition 2.3.
It should be mentioned that for trees belonging to Ty the node τy as a father does
not appear in the graphical representation of the tree. Now, for obtaining desired
order conditions of numerical method we state the following theorem.

Theorem 3.1. If the coefficients Z(k,ν)(r,µ)(θ) ∈ Ξ
s,s
0 and z(k,ν)(θ), γ(k,ν)(θ) ∈ Ξs

0, then

the stage values H(k,ν) and also the numerical solution y1 can be written as B-series as
follows:

H(k,ν) = B(Φ(k,ν), x0; h) = ∑
τ∈T

α(τ).(Φ(k,ν)(τ)(h) ⊗ Id)(es ⊗ F(τ)(x0)),

y1 = B(Φ, x0; h) = ∑
τ∈T

α(τ).Φ(τ)(h).F(τ)(x0)

in which T = T ∪ Ty and

Φ(k,ν)(τ)(h) =





es τ = ∅,

γ(k,ν)(θ) τ = •y

∑
M
µ=0 Z(k,ν)(r,µ)(θ)∏

l
j=1 Φ(r,µ)(τj)(h) τ = [τ1, τ2, . . . , τl]r

(3.7)

and

Φ(τ)(h) =





1 τ = ∅

0 τ = •y

∑
M
ν=0 z(k,ν)(θ)

⊤
es τ = •k,

∑
M
ν=0 z(k,ν)(θ)

⊤
∏

l
j=1 Φ(k,ν)(τj)(h) τ = [τ1, τ2, . . . , τl]k.

(3.8)

Proof. Proof of this theorem is similar to Theorem 5 of [10] or Theorem 3.1 of [1].

Use the relation (2.14) together with (3.4), we conclude that H(r,µ) can be written
as the following series:

H(r,µ) = ∑
τ∈T

α(τ).(Φ(r,µ)(τ)(h) ⊗ Id)(es ⊗ F(τ)(x0)). (3.9)

Now, it is sufficient to show that Φ(k,ν)(τ)(h) satisfies (3.7). From the DEFSRK
method (3.1)-(3.2) and (3.4), we obtain

H(k,ν) = η(k,ν)(θ)⊗ x0+

m

∑
r=0

M

∑
µ=0

∑
τ∈Tr

α(τ)

((
Z(k,ν)(r,µ)(θ)

(
Φ(r,µ)

)′
r
(τ)(h)

)
⊗ Id

)
(es ⊗ F(τ)(x0)),
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in which Tr includes trees in T with root τr and

(
Φ(r,µ)

)′
r
(τ)(h) =

((
Φ

(r,µ)
1

)′
r
(τ)(h), . . . ,

(
Φ

(r,µ)
s

)′
r
(τ)(h)

)⊤
.

Now, Comparing term-by term achieves the relations (3.7). Finally, the second
part of proof, i.e., the proof of (3.8) can be demonstrated in the same way.

It should be mentioned that, similar to U f in Lemma 2.6 we can construct U f in

which T trees were used. Moreover, we have U f = U f
⋃

Uy f
such that Uy f

are

the trees with root f and contain at least one node τy and U f does not include
node τy. Now, we are ready to provide the conditions for extracting the DEFSRK
methods of weak order p. For this purpose, from Lemma 2.6, Theorem 2.8 and
Theorem 3.1 one can obtain B-series of the function f , evaluated at the exact and
the numerical solutions as follows:

f (X(t0 + h)) = ∑
u∈U f

β(u).ψϕ(u)(h).G(u)(x0),

f (y1) = ∑
u∈U f

β(u).ψΦ(u)(h).G(u)(x0) + ∑
u∈Uy f

β(u).ψΦ(u)(h).G(u)(x0),

in which

ψϕ([∅] f )(h) ≡ 1, ψϕ(u = [τ1, . . . , τk] f )(h) =
k

∏
j=1

ϕ(τj)(h)

ψΦ([∅] f )(h) ≡ 1, ψΦ(u = [τ1, . . . , τk] f )(h) =
k

∏
j=1

Φ(τj)(h).

If we consider le f (h; t, x) as weak local error of the numerical method starting at
the point (t, x) corresponding to f , with stepsize h, i.e., [10]

le f (h; t, x) = E[ f (yt+h)− f (Xt+h) | yt = Xt = x]. (3.10)

then, we have two terms in the local error as below:

le f (h; t, x) = ∑
u∈U f

β(u).E[ψΦ(u)(h) − ψϕ(u)(h)].G(u)(x)+

∑
u∈Uy f

β(u).E[ψΦ(u)(h)].G(u)(x0).

Hence, with the above notation we get weak consistency of order p if and only if

i)E[ψΦ(u)(h)] = E[ψϕ(u)(h)] +O(hp+1), ∀u ∈ U f with ρ(u) ≤ p +
1

2
,

(3.11)

ii)E[ψΦ(u)(h)] = O(hp+1), ∀u ∈ Uy f
with ρ(u) ≤ p +

1

2
.

(3.12)
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On the other hand, if we apply numerical method (3.1)-(3.2) for corresponding
ODE (2.1) then we have

yn+1 = yn +
s

∑
i=1

z
(0,0)
i (θ)g0(tn + c

(0)
i h, H

(0,0)
i ), n = 0, 1, ...N − 1, (3.13)

H
(0,0)
i = η

(0,0)
i (θ)yn +

s

∑
j=1

Z
(0,0)(0,0)
ij (θ)g0(tn + c

(0)
j h, H

(0,0)
j ), i = 1, ..., s. (3.14)

Furthermore, for exponentially-fitting in the case of ODE (2.1) we suppose that
w0 = w, wi = 0 for i = 1, 2, ..., s and also take θ = wh2. Therefore, according to
relations (2.4)-(2.5) we have the following extra order conditions;

eθ − 1 − θ

h

s

∑
i=1

z
(0,0)
i (θ)eθc

(0)
i = 0, (3.15)

eθc
(0)
i − η

(0,0)
i (θ)− θ

h

s

∑
j=1

Z
(0,0)(0,0)
i,j (θ)e

θc
(0)
j = 0. (3.16)

Hence, we call SRK method (3.1)-(3.2) drift exponentially fitted if its coefficients
satisfy additional conditions (3.15)-(3.16).

Remark 3.2. We say that the DEFSRK method (3.1)-(3.2) is of the stochastic weak order
p if the conditions (3.11)-(3.12) are fulfilled.

4 A subclass of DEFSRK methods of stochastic weak second

order and its MS-stability analysis

In this section, we introduce some subclasses of DEFSRK methods of stochastic
weak second order and investigate their MS-stability analysis. In searching for
more effective SRK methods, we develop the SRK methods in [12] introduced
by Rößler that have good stability properties and need less computational effort
and running time compared with the other implicit methods. Let us consider the
following stochastic weak second order DEFSRK methods

yn+1 = yn + h
s

∑
i=1

αi(θ)g0(H
(0)
i ) +

s

∑
i=1

m

∑
k=1

(
β
(1)
i (θ) Î(k) + β

(2)
i (θ)

Î(k,k)√
h

)
gk(H

(k)
i )

+
s

∑
i=1

m

∑
k=1

(
β
(3)
i (θ) Î(k) + β

(4)
i (θ)

√
h
)

gk(Ĥ
(k)
i ),

(4.1)
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for n = 0, 1, ...N − 1 with the stage values,

H
(0)
i = yn + γ

(0)
i (θ)yn + h

s

∑
j=1

A
(0)
ij (θ)g0(H

(0)
j ) +

s

∑
j=1

m

∑
l=1

Î(l)B
(0)
ij (θ)gl(H

(l)
j ),

H
(k)
i = yn + γ

(1)
i (θ)yn + h

s

∑
j=1

A
(1)
ij (θ)g0(H

(0)
j ) +

√
h

s

∑
j=1

B
(1)
ij (θ)gk(H

(k)
j ),

Ĥ
(k)
i = yn + γ

(2)
i (θ)yn + h

s

∑
j=1

A
(2)
ij (θ)g0(H

(0)
j ) +

s

∑
j=1

m

∑
l=1
l 6=k

Î(k,l)√
h

B
(2)
ij (θ)gl(H

(l)
j ).

(4.2)

for i = 1, . . . , s and k = 1, . . . , m. Furthermore, the random variables Î(i,j) are
determined as below:

Î(i,j) =





1
2

(
Î(i) Î(j) −

√
hĨ(i)

)
f or i < j

1
2

(
Î(i) Î(j) +

√
hĨ(j)

)
f or j < i

1
2

(
Î2
(i)

− h
)

f or i = j

(4.3)

where Ĩ(i) is defined by a two point distribution with P( Ĩ(i) = ±
√

h) = 1
2 and we

also select Î(i) as three-point distributed random variables with P( Î(i) =

±
√

3h) = 1
6 and P( Î(i) = 0) = 4

6 (see [12] for more details). To indicate the weight-

ing coefficients and the coefficient matrices, we use α = (αi(θ)),

γ(l) = (γi(θ)), l = 1, 2, 3, β(k) = (β
(k)
i (θ)), k = 1, ..., 4 for corresponding vector

notations and A(k) = (A
(k)
ij (θ)), B(k) = (B

(k)
ij (θ)), k = 0, 1, 2 for corresponding

matrix notations. Then, with the above notations, the coefficients of the DEFSRK
methods (4.1)-(4.2) can be displayed in an extended Butcher array, see Table 1.

γ(0) A(0) B(0)

γ(1) A(1) B(1)

γ(2) A(2) B(2)

αT β(1)T
β(2)T

β(3)T
β(4)T

Table 1: Butcher tableau for DEFSRK methods (4.1)-(4.2)

In the class of DEFSRK methods (4.1)-(4.2) if we take

z(0,0)(θ) = αh, z(k,0)(θ) = β(1) Î(k) + β(2)
Î(k,k)√

h
, z(k,1)(θ) = β(3) Î(k) + β(4)

√
h,

γ(0,0)(θ) = γ(0), Z(0,0)(0,0)(θ) = A(0)h, Z(0,0)(r,0)(θ) = B(0) Î(r),

γ(k,0)(θ) = γ(1), Z(k,0)(0,0)(θ) = A(1)h, Z(k,0)(r,0)(θ) = B(1)
√

h1{k=r},

γ(k,1)(θ) = γ(2), Z(k,1)(0,0)(θ) = A(2)h, Z(k,1)(r,0)(θ) = B(2)
Î(k,r)√

h
1{k 6=r} (4.4)
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and H
(0,0)
i = H

(0)
i , H

(k,0)
i = H

(k)
i , H

(k,1)
i = Ĥ

(k)
i and H

(k,r)
i = 0 for 1 ≤ i ≤ s,

1 ≤ k ≤ m, 1 < r ≤ m, it is observed that the class of DEFSRK methods (4.1)-
(4.2) belong to the very general class (3.1)-(3.2). Hence, with the above setting
and the colored rooted tree analysis we can extract the stochastic weak second
order conditions for the coefficients of the DEFSRK methods (4.1)-(4.2) by em-
ploying relations (3.11)-(3.12) to all rooted trees up to order 2.5 and conditions
(3.15)-(3.16). Also, in the following, we refer the stochastic weak order of conver-
gence of methods (4.1)-(4.2) for SDE (2.7) by pS and in the deterministic case by
pD and for their pair by (pD , pS) such that pD ≥ pS. Furthermore, according to
arguments in [20], we denote Cα

P(R
d, R) as the space of functions u ∈ Cα(Rd, R)

for which all the partial derivatives up to order α ∈ N fulfilling a polynomial
growth condition [16].

We can summarize the above listed discussion in the following theorem to pro-
vide conditions of stochastic weak second order convergence.

Theorem 4.1. Suppose that the coefficient functions of SDE (2.7) satisfy gk ∈ C6
P(R

d, R)
for k = 0, 1, · · · , m. Then DEFSRK methods (4.1)-(4.2) achieve order two for the weak
approximation of the solution of the Itô SDE (2.7) if the following order conditions are
fulfilled:

1. α⊤es − 1 = O(h2) 2. β(4)⊤es = O(h
5
2 )

3. β(3)⊤es = O(h
3
2 ) 4. (β(1)⊤es)

2 − 1 = O(h2)

5. β(2)⊤es = O(h
3
2 ) 6. β(1)⊤(B(1)es) = O(h

3
2 )

7. β(4)⊤(A(2)es) = O(h
3
2 ) 8. β(3)⊤(B(2)es) = O(h

3
2 )

9. β(4)⊤(B(2)es)
2 = O(h

3
2 )

10. α⊤(A(0)es)−
1

2
= O(h) 11. α⊤(B(0)es)

2 − 1

2
= O(h)

12. (β(1)⊤es)(α
⊤(B(0)es))−

1

2
= O(h) 13. (β(1)⊤es)(β(1)⊤(A(1)es))−

1

2
= O(h)

14. β(3)⊤(A(2)es) = O(h) 15. β(2)⊤(B(1)es)− 1 = O(h)

16. β(4)⊤(B(2)es)− 1 = O(h) 17. (β(1)⊤es)(β(1)⊤(B(1)es)
2)− 1

2
= O(h)

18. (β(1)⊤es)(β(3)⊤(B(2)es)
2)− 1

2
= O(h) 19. β(1)⊤(B(1)(B(1)es)) = O(h)

20. β(3)⊤(B(2)(B(1)es)) = O(h) 21. β(3)⊤(B(2)(B(1)(B(1)es))) = O(
√

h)

22. β(1)⊤(A(1)(B(0)es)) = O(h) 23. β(3)⊤(A(2)(B(0)es)) = O(h)

24. β(4)⊤(A(2)es)
2 = O(

√
h) 25. β(4)⊤(A(2)(A(0)es)) = O(

√
h)

26. α⊤(B(0)(B(1)es)) = O(
√

h) 27. β(2)⊤(A(1)es) = O(
√

h)

28. β(1)⊤((A(1)es)(B(1)es)) = O(
√

h) 29. β(3)⊤((A(2)es)(B(2)es)) = O(
√

h)

30. β(4)⊤(A(2)(B(0)es)) = O(
√

h) 31. β(2)⊤(A(1)(B(0)es)) = O(
√

h)

32. β(4)⊤((B(2)es)
2(A(2)es)) = O(

√
h) 33. β(4)⊤(A(2)(B(0)es)

2) = O(
√

h)

34. β(2)⊤(A(1)(B(0)es)
2) = O(

√
h) 35. β(1)⊤(B(1)(A(1)es)) = O(

√
h)
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36. β(3)⊤(B(2)(A(1)es)) = O(
√

h) 37. β(2)⊤(B(1)es)
2 = O(

√
h)

38. β(4)⊤(B(2)(B(1)es)) = O(
√

h) 39. β(2)⊤(B(1)(B(1)es)) = O(
√

h)

40. β(1)⊤(B(1)es)
3 = O(

√
h) 41. β(3)⊤(B(2)es)

3 = O(
√

h)

42. β(1)⊤(B(1)(B(1)es)
2) = O(

√
h) 43. β(3)⊤(B(2)(B(1)es)

2) = O(
√

h)

44. β(4)⊤(B(2)es)
4 = O(

√
h) 45. β(4)⊤(B(2)(B(1)es))

2 = O(
√

h)

46. β(4)⊤((B(2)es)(B(2)(B(1)es))) = O(h) 47. α⊤((B(0)es)(B(0)(B(1)es))) = O(
√

h)

48. β(1)⊤((A(1)(B(0)es))(B(1)es)) = O(
√

h) 49. β(3)⊤((A(2)(B(0)es))(B(2)es)) = O(
√

h)

50. β(1)⊤(A(1)(B(0)(B(1)es))) = O(
√

h) 51. β(3)⊤(A(2)(B(0)(B(1)es))) = O(
√

h)

52. β(4)⊤((B(2)(A(1)es))(B(2)es)) = O(
√

h) 53. β(1)⊤(B(1)(A(1)(B(0)es))) = O(
√

h)

54. β(3)⊤(B(2)(A(1)(B(0)es))) = O(
√

h) 55. β(1)⊤((B(1)es)(B(1)(B(1)es))) = O(
√

h)

56. β(1)⊤((B(2)es)(B(2)(B(1)es))) = O(
√

h) 57. β(1)⊤(B(1)(B(1)(B(1)es))) = O(
√

h)

58. β(4)⊤((B(2)es)(B(2)(B(1)(B(1)es)))) = O(
√

h) 59. β(4)⊤((B(2)es)(B(2)(B(1)es)
2)) = O(

√
h)

60. β(4)⊤γ(2) = O(h
5
2 ) 61. eθ − 1 − θ

s

∑
i=1

αi(θ)e
θc

(0)
i = 0

62. eθc
(0)
i − (1 + γ

(0)
i (θ))− θ ∑

s
j=1 A

(0)
i,j (θ)e

θc
(0)
j = 0, 1 ≤ i ≤ s.

Proof. The proof of this theorem is performed by using Remark 3.2. Consequently,
applying relation (3.11) for all rooted trees up to order 2.5, we reach order con-
ditions 1 to 59 that are the same as 59 obtained order conditions in Theorem 5.1
of [25], then by using relation (3.12) for all trees τ ∈ Uy f

with ρ(τ) ≤ 2.5, we can

obtain order condition 60 and ultimately from relations (3.15)-(3.16), we can attain
other order conditions. It should be mentioned that for all trees
τ ∈ Uy f

, we have ρ(τ) ≥ 2. So, it is sufficient to use relation (3.12) for trees

in Uy f
with order 2.5. Therefore, we only apply this relation for tree [[τy]j1 ] f ∈

Uy f
. Thus, we get ψΦ([[τy]j1 ]) = Φ([τy]j1) = z(j1,0)⊤γ(j1,0) + z(j1,1)⊤γ(j1,1). So,

Φ([τy]j1) = (β(1)⊤ Î(j1)
+ β(2)⊤ Î(j1,j1)√

h
)γ(1) + (β(3)⊤ Î(j1)

+ β(4)⊤
√

h)γ(2), and conse-

quently we have E(ψΦ(t0.5,1)) =
√

h(β(4)⊤γ(2)). On the other hand, we have

order condition β(4)⊤γ(2) = O(h
5
2 ).

4.1 Construction of DEFSRK method of order (3, 2)

Considering the order conditions obtained from Theorem 3.1, in this section we
introduce some specific methods with the reasonable region of MS-stability.
To make degrees of freedom in choosing the coefficients of order two DEFSRK
schemes, we take s = 3. Also, for obtaining better convergence properties of a
DEFSRK scheme, particularly in the case of ODE and for SDEs with small noise,
we select pD > pS. Therefore, with the help of the ideas of diagonally drift im-
plicit stochastic Runge-Kutta methods DDIRDI4 and DDIRDI5 in [12] that are
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SRK schemes with appropriate computational cost and stability property for stiff
SDEs, we construct new schemes with the following corresponding coefficient
matrices:

A(0) =




c1 0 0

A
(0)
21 c1 0
0 0 0


 , B(0) =




0 0 0

B
(0)
21 0 0
0 0 0


 , A(1) =




0 0 0
c2

3 0 0
c2

3 0 0


 , B(1) =




0 0 0
c3 0 0
−c3 0 0


 ,

B(2) =




0 0 0
c4 0 0
−c4 0 0


 , γ(0)⊤ =

[
γ
(0)
1 , γ

(0)
2 , 0

]
, γ(1)⊤ =

[
γ
(1)
1 , 0, 0,

]
, γ(2)⊤ =

[
γ
(2)
1 , 0, 0,

]
,

β(1)⊤ =

[
1 − 1

2c2
3

,
1

4c2
3

,
1

4c2
3

]
, β(2)⊤ =

[
0,

1

2c3
,− 1

2c3

]
, β(3)⊤ =

[
− 1

2c2
4

,
1

4c2
4

,
1

4c2
4

]
, β(4)⊤ =

[
0,

1

2c4
,− 1

2c4

]
,

α⊤ = [α1, α2, 0] , c(0)
⊤
= [c1, c2, 1 − c1 − c2] .

Also, we take A(2) ≡ 0 and c3 = c4 = 1. Therefore, with s = 3 and from the order
conditions obtained in Theorem 4.1 we calculate the following coefficients:

α1 = −θec2θ − eθ + 1

θ (ec1θ − ec2θ)
, α2 =

θec1θ − eθ + 1

θ (ec1θ − ec2θ)
,

γ
(0)
1 = ec1θ(1 − c1θ)− 1, γ

(0)
2 = (1 − c1θ)ec2θ − A

(0)
21 θec1θ − 1, (4.5)

A
(0)
21 = − (2c1 − 1)θ

(
ec1θ − ec2θ

)

2θec1θ − 2eθ + 2
,

and then for simplicity’s sake we put:

γ
(1)
1 = 1 − eθ , γ

(2)
1 = 1 − eθ , B

(0)
21 =

1

2α2
. (4.6)

It should be mentioned that for the method of order (3, 2) we need extra order
conditions

α⊤
(

A(0)es

)2
− 1

3
= O(h), α⊤

(
A(0)(A(0)es)

)
− 1

6
= O(h),

α⊤
(

A(0)γ(0)
)2

= O(h), α⊤
(

A(0)(A(0)γ(0))
)
= O(h).

So, with the above coefficients, if we apply DEFSRK (4.1)-(4.2) to the correspond-
ing ODE then we obtain the following values for c1 and c2 for DEFSRK method
with pD = 3:

c1 =
1

2
±

√
3

6
, c2 =

3c1 − 2

6c1 − 3
.

Now, we proceed on the stability analysis of the DEFSRK (4.1)-(4.2). In the follow-
ing, providing the possibility of introducing some specific schemes with
appropriate stability properties for stiff SDEs will be our purpose. Let us con-
sider the known scalar linear SDE test with multiplicative noise,

dXt = λXtdt + µXtdWt, Xt0 = x0 (4.7)
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such that Xt = x0 exp ((λ − 1/2µ2)t + µWt) is the exact solution when x0 6= 0
with probability one. In this paper, we restrict our studies to the MS-stability
which refers to the analysis w.r.t. the second moment of the solution process
of SDE (4.7) and the corresponding approximation process, respectively [12, 15,
16, 26]. The solution of SDE (4.7) is said to be (asymptotically) MS-stable if we
have [15]

lim
t→∞

E[|Xt|2] = 0,⇔ 2ℜ(λ) + |µ|2 < 0, (4.8)

for λ, µ ∈ C. As a consequence of the left hand side of the equivalence in (4.8), we
say that a numerical method is asymptotically MS-stable if the numerical solution
yn, generated by the method satisfies

lim
n→∞

E[|yn|2] = 0. (4.9)

Applying a one-step stochastic numerical method by stepsize h > 0 to the linear

test (4.7), with notation x = hλ and y =
√

hµ, we obtain the following recurrence
formula

yn+1 = Rn(x, y)yn, (4.10)

in which Rn(x, y) is called stability function. According to (4.9), the domain of
MS-stability of the numerical method is the subset of C2 such as RMS = {(x, y) ∈
C2 : R̂n(x, y) < 1} in which R̂n(x, y) = E[|Rn(x, y)|2]. Since, in practice the
domain of stability for λ, µ ∈ C is not easy to visualize, in the following for
plotting the areas of MS-stability we suppose that λ, µ ∈ R. In addition, as
a result of the right hand side of the equivalence in (4.8), for λ, µ ∈ R, the
region of MS-stability for SDE (4.7) reduces to the area of the x − y plane with
2x + y2 < 0. Furthermore, the numerical method is said to be A-stable if the do-
main of stability of SDE (4.7) is a subset of RMS. On the other hand, to guarantee
A-stability property of the DEFSRK method (4.1)-(4.2), when applied to ODEs,

we take c1 = 1
2 +

√
3

6 (for more details see [14]).
Now, from the above discussion we can obtain the stability function ΓDEFSRK(x, y)
of DEFSRK method (4.1)-(4.2) as follows:

ΓDEFSRK(x, y) =
(

1 +
x

1 − c1x
+

α2(1 + γ
(0)
1 )c1x2

(1 − c1x)2

)2

+

(
g1 + g2

x

1 − c1x

)2

y2 +
1

2

(
1 + γ

(1)
1

)2
y4,

(4.11)

in which

g1 = 1 +
1

2
γ
(1)
1 +

1

4
(γ

(1)
2 + γ

(1)
3 ), g2 = α2B

(0)
21 (1 + γ

(1)
1 ) +

1

2
(1 + γ

(0)
1 ).

To decrease the magnitude of the term that includes y4 in the stability function

(4.11), it will be more appropriate that the condition
(

1 + γ
(1)
1

)2
= 0 is fulfilled.
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Therefore we select γ
(1)
1 = −1 and the corresponding DEFSRK scheme with

θ = log(2) is denoted by DEFSRK5. We consider various values for θ and then
plot the MS-stability region of corresponding DEFSRK schemes. To exhibit the
MS-stability region of the methods, we use Mathematica software. The regions of
MS-stability of the methods are presented in Fig. 1. As we observe, for the value

of γ
(1)
1 = −1, the better stability properties will be obtained. Also, this figure

Figure 1: MS-stability regions. (left: top θ = log(1.6), bottom θ = log(1.98),
right: top θ = log(1.9), bottom θ = log(2)) DEFSRK method (light gray),
DDIRDI5 method (dark) and SDE (4.7) (dark gray).

illustrates the significant improvement of the region of stability of the proposed
DEFSRK method DEFSRK5 in comparison with that of DDIRDI5. To indicate the
enclosed ability of the region of stability of the SDE (4.7) by DEFSRK5 method,
we replace y2 with −2x in the stability function ΓDEFSRK(x, y)− 1 and then plot

f̂ (x) = ΓDEFSRK(x,
√
−2x)− 1. Similarly, we carry out this process for DDIRDI5

method for displaying ĝ(x) = ΓDDIRDI5(x,
√
−2x)− 1 in which ΓDDIRDI5(x, y) is

the stability function of this method. The plotted figures in Fig. 2 show that the
region of MS-stability of the SDE (4.7) is surrounded by the region of
MS-stability of DEFSRK5 method in a reasonably large domain, whereas it seems
that the region of MS-stability of the SDE (4.7) is not surrounded by the region of
the MS-stability of DDIRDI5 method, experimentally.
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Figure 2: Stability functions f̂ (x) and ĝ(x). DEFSRK5 method (left), DDIRDI5
method (right).

5 Numerical experiments

In the following numerical examples, we illustrate the performance of the
DEFSRK5 scheme developed in the previous sections. The efficiency of the pro-
posed second order DEFSRK scheme DEFSRK5 will be indicated in comparison
with the second order DDIRDI4 and DDIRDI5 schemes. In the following numer-
ical examples we consider stepsizes h = 1

2 , 1
8 , 1

32 , 1
128 , 1

256 for Test problems 1, 2,

h = 1
2 , 1

4 , 1
8 , 1

16 for Test problem 3 and 105 simulated trajectories.

5.1 Test problem 1

As the first example we consider the scalar linear SDE test (4.7) with x0 = 1,
T = 2, λ = −300, µ = 20. In order to analyze the numerical MS-stability, we
approximated the E[|Xt|2] by Monte Carlo simulation. The computed results are
shown in Fig. 3. From this figure, MS-stability of the method DEFSRK5 for all
stepsizes is clear whereas the method DDIRDI5 is MS-stable only for h = 1

256 .

Also, in this figure, E[|Xt|2] is plotted as reference red line for comparison.

5.2 Test problem 2

As the second example, we consider the nonlinear SDE

dXt = 2λ2(Xt)
7dt + λ(Xt)

4dWt, x0 = 0.2, t ∈ [0, 1], (5.1)

The exact solution of this SDE is Xt =
(

x−3
0 − 3λWt

)− 1
3
. In Table 2, we report

the error |E[XT ]− E[yT ]| of the proposed methods. This table illustrates that the
results of DEFSRK5 method are acceptably better than those of others. Especially,
in the case of λ = 12, we observe the MS-stability of the DEFSRK5 method for all
stepsizes, but not for DDIRDI4 and DDIRDI5 methods.
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Figure 3: Numerical performance of DEFSRK5 and DDIRDI5 methods for Test
problem 1

Table 2: Error of proposed methods at T = 1 for Test problem 2

λ = 9 λ = 10 λ = 12

Stepsize DEFSRK5 DDIRDI5 DDIRDI4 DEFSRK5 DDIRDI5 DDIRDI4 DEFSRK5 DDIRDI5 DDIRDI4

1
2 9.3237e-3 4.1701e-04 8.3247e-3 8.1727e-1 3.1960e-1 8.1642e-1 3.5477e-1 3.0600e-1 1.4515e-1

1
8 5.4612e-4 1.7176e-4 1.1888e-4 6.3495e-2 unst. unst. 1.2709e-2 unst. unst.

1
32 4.0302e-4 3.4250e-5 3.2610e-5 1.0376e-4 unst. unst 8.5303e-3 unst. unst.

1
128 1.9824e-5 2.4232e-6 1.1652e-5 6.9203e-4 unst. unst. 1.7958e-3 unst. unst.

1
256 5.3987e-7 7.0877e-7 2.8424e-6 5.7142e-4 unst. unst. 5.6209e-4 unst. unst.

5.3 Test problem 3

In this example, we consider two-dimensional SDE with non-commutative noise

dXt =

[
λX1

t
λX2

t

]
dt +

[
σX1

t ǫX2
t

−σX2
t ǫX1

t

] [
dW1

t
dW2

t

]
, (5.2)

in which X1
0 = X2

0 = 1 and T = 4. In this example, we plotted the estimated

mean-square norm of the first component X1
t of the numerical solution Xt, which

is approximated pointwise by [5]

(
E[(X1

ti
)2]
) 1

2 ≈
(

1

M

M

∑
ℓ=1

(yℓ,i)
2

) 1
2

, (5.3)

in which yℓ,i refers to the numerical solution at step point ti in ℓth simulation.
From [5] we conclude that the zero solutions of SDE (5.2) are asymptotically
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MS-stable if and only if λ + σ2

2 + ǫ2

2 < 0. Therefore we consider λ = −10, σ = 3
and ǫ = 3. Again, from Fig. 4, we can see that the appropriate results for
DEFSRK5 method is achieved relatively.

Figure 4: MS-norm of X1
t for Test problem 3 with λ = −10, σ = 3 and ǫ = 3

6 Conclusions

In this paper, we have introduced a family of DEFSRK methods for the weak
approximation of the systems of SDEs with multiplicative noise in the Itô sense,
with arbitrary order p. The desired stochastic weak order conditions of the
method have been obtained by the colored rooted trees analysis. With some spe-
cial coefficient matrices that led us the methods appropriate for stiff SDEs, the
MS-stability function was derived. Consequently, by finding appropriate values
of the parameters of the proposed methods, we introduced DEFSRK method with
weak order two, denoted by DEFSRK5, with suitable stability properties.
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