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Abstract

Topological properties of compactly-fibered coset spaces are investigated.
It is proved that for a compactly-fibered coset space X with Nag(X) ≤ τ, the
closure of a family of Gτ-sets is also a Gτ-set in X. We also show that the
equation χ(X) = πχ(X) holds for any compactly-fibered coset space X. A
Dichotomy Theorem for compactly-fibered coset spaces is established: every
remainder of such a space has the Baire property, or is σ-compact.

1 Introduction

A topological group is a group G with a topology which makes the multipli-
cation and the inversion in G continuous. Algebra and topology, the two fun-
damental domains of mathematics, play complementary roles in a topological
group. Given a topological group G and its closed subgroup H, G/H stands for
the quotient space of G which consists of left cosets xH, where x ∈ G. We call the
space G/H so obtained a coset space. One of the main operations on topological
groups is that of taking coset spaces. Many non-trivial examples and counterex-
amples arise as quotients of relatively simple and well-known topological groups.
This operation has been the subject of an intensive and thorough study; but there
exists still a wealth of interesting open problems related to the behaviour of dif-
ferent topological and algebraic properties under taking quotients. For instance,
a natural question for consideration is the following one: which homogeneous
spaces can be represented as quotients of topological groups with respect to closed
subgroups? So far only partial answers to this question are obtained.
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For a T0 topological group G and its closed subgroup H, the coset space G/H
has many interesting properties. According to [6, Theorem 1.5.1], G/H is homo-
geneous, i.e., for any two points x, y ∈ G/H, there is a homeomorphism f of
G/H onto itself such that f (x) = y. Moreover, G/H is Tychonoff, and hence it is
a uniform space. If G is metrizable, then G/H is metrizable too.

If H is compact, then G/H is called a compactly-fibered coset space.
Compactly-fibered coset spaces can be regarded as a generalization of topological
groups: if H contains only the identity of G, then G/H = G is a topological group.
It was observed that many classical results on topological groups can be extended
to a compactly-fibered coset space. However, a compactly-fibered coset space
need’t be homeomorphic to a topological group. So the study of such spaces is
not trivial. An essential investigation of compactly-fibered coset spaces was given
recently by Arhangel’skii [4], who proved among others that the product of any
family of pseudocompact compactly-fibered coset spaces is also pseudocompact.
Clearly, the similar statement for general topological spaces is no longer true.
We can conclude from this result that the C̆ech-Stone compactification of the
product of two pseudocompact compactly-fibered coset spaces is homeomorphic
to the product of their C̆ech-Stone compactifications. In [4], Arhangel’skii also
studied the remainders of compactly-fibered spaces. One of his results says that
every remainder of such a space is either pseudocompact or metric-friendly. This
improves a Dichotomy Theorem for remainders of topological groups
[2, Theorem 2.4].

In this paper we show that some results about topological groups still hold
in the class of compactly-fibered coset spaces. In Section 3 we investigate some
properties of compactly-fibered coset spaces related to Nagami numbers.
Theorem 3.5 says that every compactly-fibered coset space X with Nag(X) ≤ τ
is τ-cellular. In Theorem 3.8 we show that for a compactly-fibered coset space
X with Nag(X) ≤ τ, the closure of a family of Gτ-sets is also a Gτ-set in X. It
also turns out that the character of a compactly-fibered coset space coincides with
its π-character. In Section 4 some results about remainders of compactly-fibered
coset spaces are given. In particular, we prove a dichotomy theorem which says
that for such a space, its remainder is either σ-compact, or has the Baire property.
This generalizes a result about remainders on topological groups [3, Theorem 1.1]

2 Preliminary results

In this article “a space” always stands for “Tychonoff topological space”. By a
remainder of a space X we mean the subspace bX \ X of a compactification bX of

X. For a subset A of a space X, A
X

stands for the closure of A in X, also denoted
as A if no confusion is possible.

Recall that a space X is a p-space if there exists a sequence {Un : n ∈ ω} of
families Un of open subsets of the C̆ech-Stone compactification βX of X satisfying
the following two conditions: (a) each Un covers X, and (b) for each x ∈ X,
⋂

n∈ω st(x,Un) ⊂ {x}, where st(x,Un) =
⋃
{U : x ∈ U ∈ Un}. A (Lindelöf)

paracompact p-space is the preimage of a (separable) metrizable space under a
perfect mapping. A mapping is called perfect if it is continuous, closed, and if all
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its fibers are compact.

A space X is of countable type if every compact subset P of X is contained in
a compact subset F ⊂ X that has a countable base in X. Every p-space, as well as
each metrizable space, is of countable type.

Let F be the family of all closed subsets of the C̆ech-Stone compactification βX
of a Tychonoff space X. The Nagami number Nag(X) of X is defined as follows:
Nag(X) = min{|P| : P ⊂ F ,P separates X from βX \ X}, where P separating X
from βX \ X means that for any two points x, y such that x ∈ X, y ∈ βX \ X, there
exists P ∈ P such that x ∈ P and y /∈ P. A Tychonoff space X with Nag(X) ≤ ω
is called a Lindelöf Σ-space.

For an infinite cardinal τ, a Gτ-set of a topological space X means a subset of
X which is the intersection of ≤ τ open subsets in X. In particular, a Gδ-set of X
is the intersection of a countable family of open subsets in X.

A space X is said to be homogeneous if for each x ∈ X and each y ∈ X, there
exists a homeomorphism f of the space X onto itself such that f (x) = y. A regular
closed subset F of a space X means that F is the closure of some open subset of X.
A space X is called σ-compact if it is the union of a countable family of compact
subsets of X.

Let P be a topological property. A space X is said to have the property P
locally if, for every x ∈ X, there exists a neighbourhood O (not necessarily open)
of x in X such that O has the property P . Further, if P is closed hereditary, then
O can be fixed as a closed neighbourhood of x in X.

Let X be a space, F ⊂ X (or x ∈ X) and O be a family of non-empty open
subsets of X. O is said to be a π-base for X at F (or x) if for every neighbourhood
U of F (or x) in X, there exists an element O ∈ O such that O ⊂ U. O is said to be
a π-base of X if for every non-empty open subset U of X, there exists an element
O ∈ O such that O ⊂ U. The π-character πχ(x, X) for X at x is a cardinal
defined as follows: πχ(x, X) = min{|O| : O is a π-base for X at x} + ω. The
π-character πχ(X) and the π-weight πw(X) of X are defined, respectively, as
follows: πχ(X) = sup{πχ(x, X) : x ∈ X}, πw(X) = min{|O| : O is a π-base of
X}+ ω.

Theorem 2.1. [4, Theorem 4.2] Let X be a compactly-fibered non-locally compact coset
space with a remainder Y. X is metrizable, and Y is metric-friendly if one of the two
following conditions holds.

i1 The π-character of the space Y is countable at each y ∈ Y, and the space Y is not
countably compact.

i2 The π-character of the space X (at some point of X) is countable.

It follows from the proof of [4, Theorem 4.2] that the assumption that X is
non-locally compact is superfluous if condition i2 holds.

Throughout, we follow the terminology and notation from [6, 7].
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3 Topological properties of compactly-fibered coset spaces

related to Nagami numbers

Lemma 3.1 generalizes a well-known property for topological groups.

Lemma 3.1. If a compactly-fibered coset space X has a non-empty compact subset F
which has a countable base of open neighbourhoods in X, then X is a paracompact
p-space.

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G → G/H such that X = G/H. Then q is a perfect mapping. Since
F is a non-empty compact subset of X with a countable neighbourhood base in
X, and q is perfect, it follows that the subset q−1(F) is a non-empty compact
subset of G with a countable base of open neighbourhoods in G. Since G is a
topological group, it follows G is of countable type. Then, by [6, Theorem 4.3.35],
G is a paracompact p-space. Therefore, X is a paracompact p-space, since X is the
image of G under the perfect mapping q (see [8]).

We say that a space X has countable tightness if for every point x ∈ X and
every subset A ⊂ X satisfying x ∈ A, there is a countable subset B ⊂ A such that
x ∈ B.

Proposition 3.2. If X is a compactly-fibered coset space of countable type and has count-
able tightness, then X metrizable.

Proof. Fix a non-empty compact subspace F of X such that X has a countable
base at F. By the assumption, F has countable tightness. According to [12], F
has countable π-character. Since F has a countable neighbourhood base in X, it
follows that X has countable π-character at each point of F. Then the homogene-
ity of X implies that X has countable π-character. Therefore, X metrizable [4,
Theorem 4.2]

Proposition 3.3. If a compactly-fibered coset space X is the union of a finite family η of
metrizable subspaces, then X is metrizable.

Proof. Since η is finite, there exists an element M of η and a non-empty open
subset U of X such that M ∩ U is dense in U. Since X is regular and M ∩ U is
metrizable, we conclude that U has a countable base at each point of M∩U. Then
it follows from the homogeneity of X and U being open that X is first countable.
Therefore, X is metrizable [4, Theorem 4.2].

Theorem 3.4. If a compactly-fibered coset space X is locally paracompact (locally meta-
compact, locally subparacompact), then it is paracompact (metacompact, subparacom-
pact).

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G → G/H such that X = G/H. Then q is an open and perfect
mapping. Assume that X is locally paracompact. So we can take a non-empty
regular closed subset F of X such that F is paracompact. Clearly, the restriction
f = q |q−1(F): q−1(F) → F of q to q−1(F) is perfect. Since the inverse image of a
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paracompact space under a perfect mapping is also paracompact, it follows that
q−1(F) is a paracompact subspace of G. Let U be the interior of F in X. Then

q−1(F) = q−1(U) = q−1(U), since q is open and F is a regular closed subset
of X. Hence, q−1(F) is a regular closed subset of G. Hence, it follows from the
homogeneity of G that G is locally paracompact. By [5, Corollary 1.2], G is para-
compact. Therefore, X is paracompact, since X is the image of G under the perfect
mapping q.
The proof in the situation where X is locally metacompact or locally subparacom-
pact is similar.

Theorem 3.5. For an infinite cardinal τ, every compactly-fibered coset space X with
Nag(X) ≤ τ is τ-cellular, i.e., for every family F of Gτ-sets in X, there exists a subfam-
ily P of F with |P| ≤ τ such that

⋃
P is dense in

⋃
F .

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G → G/H such that X = G/H. Since q is perfect, it follows from
[6, Proposition 5.3.6] that Nag(G) = Nag(X) ≤ τ. Suppose that F is a family of
Gτ-sets in X. Clearly, {q−1(F) : F ∈ F} is also a family of Gτ-sets in G. Since
each topological group with the Nagami number ≤ τ is τ-cellular [6, Theorem
5.3.18], there exists a subfamily T of {q−1(F) : F ∈ F} such that

⋃
T is dense in

⋃
{q−1(F) : F ∈ F} and |T | ≤ τ. Therefore,

⋃
{q(T) : T ∈ T } is dense in

⋃
F ,

since q is continuous.

Corollary 3.6. If a compactly-fibered coset space X is a Lindelöf Σ-space, then X is
ω-cellular. In particular, X has countable cellularity.

A sequence {Un : n ∈ ω} of families Un of subsets of a space Y is called
σ-disjoint if for each n ∈ ω, any two elements of Un are disjoint as subsets of Y.

Corollary 3.7. If a compactly-fibered coset space X is a Lindelöf Σ-space and has a
σ-disjoint π-base, then X is separable and metrizable.

Proof. By Corollary 3.6, X has countable cellularity. Then it follows from X having
a σ-disjoint π-base that X has a countable π-base. Therefore, X is separable and
metrizable.

Theorem 3.8. Let Π = ∏i∈I Xi be a product of a family {Xi : i ∈ I} of compactly-
fibered coset spaces satisfying Nag(Xi) ≤ τ for each i ∈ I, where τ is an infinite cardinal.
Then Π is τ-cellular.

Proof. For each i ∈ I, fix a topological group Gi, a compact subgroup Hi of Gi,
and the quotient mapping qi : Gi → Gi/Hi such that Xi = Gi/Hi. Since each qi is
perfect and Nag(Xi) ≤ τ, it follows that Nag(Gi) ≤ τ. According to [6, Theorem
5.3.30], ∏i∈I Gi is τ-cellular. Therefore, Π is τ-cellular, since Π is the image of

∏i∈I Gi under the perfect mapping ∏i∈I qi.

Corollary 3.9. Suppose that X = ∏i∈I Xi is a product of a family {Xi : i ∈ I} of
compactly-fibered coset spaces and each Xi is a Lindelöf Σ-space, then X has countable
cellularity.
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Theorem 3.10. Let X be a compactly-fibered coset space with Nag(X) ≤ τ, where τ is
an infinite cardinal. If F is a family of Gτ-sets in X, then the closure of

⋃
F is also a

Gτ-set in X.

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G → G/H such that X = G/H. Suppose that F is a family of
Gτ-sets in X. Clearly, {q−1(F) : F ∈ F} is a family of Gτ-sets in G. Since G is
a topological group with Nag(G) ≤ τ, it follows from [6, Theorem 5.3.26] that

the closure
⋃
{q−1(F) : F ∈ F} of

⋃
{q−1(F) : F ∈ F} is a Gτ-set in G. Put A =

⋃
{q−1(F) : F ∈ F}. So there is a family of open subsets {Oα : α < τ} of G such

that A =
⋂

α<τ Oα. For each α < τ and x ∈ G \ Oα, choose open neighbourhoods
Uα,x and Vα,x of the identity e of G such that xUα,x ∩ A = ∅ and V2

α,x ⊂ Uα,x.
Clearly, for each α < τ, the family {xVα,x : x ∈ G \Oα} of open subsets of G covers
the closed subset G \ Oα of G. Then there exists a subset Bα of G \ Oα such that
G \ Oα ⊂

⋃
{xVα,x : x ∈ Bα} and |Bα| ≤ τ, since the Lindelöf number l(G) of G is

no larger than the Nagami number Nag(G) of G. Put ν = {xVα,x : x ∈ Bα, α < τ}.
Clearly, |ν| ≤ τ and

⋃
ν = G \ A.

Claim 1: For each λ ⊂ ν, |λ| < ω,
⋃

λ ∩ A = ∅.

Since λ is finite, there exists n ∈ ω such that λ = {xiVαi,xi
: i < n}. Choose a

symmetric open neighbourhood V of the identity e of G such that V ⊂
⋂

i<n Vαi,xi
.

Then
⋃

λ ∩ A ⊂ (
⋃

λ)V−1 ∩ A = (
⋃

i<n xiVαi,xi
V) ∩ A ⊂ (

⋃
i<n xiV

2
αi,xi

) ∩ A ⊂
(
⋃

i<n xiUαi,xi
) ∩ A = ∅. The claim is verified.

Put µ = {G \
⋃

λ : λ ⊂ ν, |λ| < ω}. Clearly, |µ| ≤ τ and
⋂

µ = A. Since q is

open,
⋂

µ = A =
⋃
{q−1(F) : F ∈ F} = q−1(

⋃
F ). Thus, q(

⋂
µ) = q(A) =

⋃
F .

Now, it remains to prove the following equation.

Claim 2: q(
⋂

µ) =
⋂

O∈µ q(O).

Clearly, q(
⋂

µ) ⊂
⋂

O∈µ q(O) holds, so it suffices to show the converse. Take
a point x of G such that x /∈ A. Clearly, xH ∩ A = ∅, since A is the union of
some left cosets of H in G. Since xH is a compact subset of G and ν covers G \ A,
there exists a finite set λ of ν such that xH ⊂

⋃
λ. Thus, q(x) /∈ q(G \

⋃
λ). Since

G \
⋃

λ ∈ µ, it follows that q(x) /∈
⋂

O∈µ q(O). The claim is verified.

A subset F of a space X is called a zero-set in X, if there exists a real-valued
function f on X such that F = f−1(0).

Corollary 3.11. Let X be a compactly-fibered coset space. If X is a Lindelöf Σ-space, then
every regular closed subset of X is a zero-set in X.

Proof. Fix a regular closed subset F of X, i.e., F is the closure of some open subset
of X. Clearly, every open subset of X is a Gδ-set of X. Then, by Theorem 3.8, F is
a Gδ-set of X. Since X is a normal space, it follows that F is a zero-set in X.

Theorem 3.12. For every compactly-fibered coset space X, χ(X) = πχ(X).

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G → G/H such that X = G/H.
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Clearly, πχ(X) ≤ χ(X). It suffices to prove the converse. Assume that
κ = πχ(X) and take a family {Uα : α < κ} of non-empty open subsets of X
such that {Uα : α < κ} is a π-base for X at q(e), where e is the identity of G. Since
q is perfect, it follows that λ = {q−1(Uα) : α < κ} is a π-base for G at H.

Claim: The family µ = {q(OO−1) : O ∈ λ} is a base for X at q(e).

Clearly, OO−1 is an open neighbourhood of e in G, for each O ∈ λ. Since q
is open, each q(OO−1) is an open neighbourhood of q(e) in X. For any neigh-
bourhood V of q(e), q−1(V) is a neighbourhood of H in G. Since G is a topolog-
ical group, the mapping f : G × G → G of the product G × G to G defined by
f (u, v) = u−1v is continuous. Observe that H is compact and f (H, H) = H−1H =
H ⊂ q−1(V). By the Wallace Theorem, we can find two open subsets O1, O2 of G

such that H × H ⊂ O1 × O2 ⊂ f−1(q−1(V)). Therefore, H ⊂ O−1
1 O2 ⊂ q−1(V).

Since the family λ is a π-base for G at H, we can find O ∈ λ such that O ⊂ O1 ∩O2.
Thus, OO−1 ⊂ q−1(V), which implies that q(OO−1) ⊂ V. Therefore, µ is a base
for X at q(e). The claim is verified.

Clearly, |µ| ≤ κ. Since X is homogeneous, we have that χ(X) ≤ πχ(X).

4 Remainders of compactly-fibered coset spaces

The following result extends a Dichotomy Theorem for remainders of topological
groups to compactly-fibered coset spaces. The technique used in the proof is due
to Arhangel’skii.

Theorem 4.1. For a compactly-fibered coset space X, each remainder of X either has the
Baire property, or is σ-compact.

Proof. If X is locally compact, then each remainder of X is compact having the
Baire property and also being σ-compact.

Assume now that X is non-locally compact. Since X is homogeneous, we have
that X is nowhere locally-compact. Let bX be a compactification of X such that
the remainder Y = bX \ X does not have the Baire property. Then, there exists
a sequence {On : n ∈ ω} of open subsets of Y such that each On is dense in Y
and

⋂
n∈ω On is not dense in Y. Observe that Y is dense in bX, so there is a se-

quence {Un : n ∈ ω} of open subsets of bX and a non-empty open subset V of

bX such that V ∩
⋂

n∈ω On
bX

= ∅ and Un ∩ Y = On, for each n ∈ ω. It is easy to
see that

⋂
n∈ω Un is C̆ech-complete and is dense in bX. Clearly, V ∩ (

⋂
n∈ω Un) =

(V ∩ X) ∩ (
⋂

n∈ω Un). Hence, V ∩ (
⋂

n∈ω Un) is a non-empty C̆ech-complete sub-
space of X and is dense in V ∩ X. Since X is homogeneous, it follows that, for
each non-empty open subset U of X, we can take a non-empty open subset W
contained in U and a C̆ech-complete subspace S of W such that S is dense in W.
By Zorn’s Lemma, there exists a maximal disjoint family η of non-empty open
subsets of X such that each element of η contains a dense C̆ech-complete sub-
space. Clearly,

⋃
η is dense in X. For each U ∈ η fix an open subset bU of bX and

a C̆ech-complete subspace FU of U such that bU ∩ X = U and FU is dense in U.
Note that FU is dense in bU, so there exists a countable family {On(U) : n ∈ ω}
of open subsets On(U) of bU such that FU =

⋂
n∈ω On(U). Put F =

⋃
U∈η FU and
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Wn =
⋃

U∈η On(U), for n ∈ ω. Then it follows from {bU : U ∈ η} being disjoint
that F =

⋂
n∈ω Wn. Since each Wn is dense in

⋃
U∈η bU and

⋃
U∈η bU is dense in

bX, each Wn is dense in bX. Therefore, F is a dense C̆ech-complete subspace of
bX and is contained in X.

Fix a topological group G, a compact subgroup H of G, and the quotient map-
ping q : G → G/H such that X = G/H. Since q is a continuous open mapping,

q−1(F) = q−1(F) = q−1(X) = G. Hence, q−1(F) is dense in G. Since q is per-
fect, q−1(F) is C̆ech-complete. Then, by [3, Theorem 1.2], G is C̆ech-complete.
Thus, X is C̆ech-complete, since X is the image of G under the perfect mapping
q. Therefore, Y is σ-compact.

Recall that a regular space X is developable if there exists a sequence of open
covers {Un : n ∈ ω} of X such that, for every x ∈ X, {st(x,Un) : n ∈ ω} is a base
for X at x, where st(x,Un) =

⋃
{U ∈ Un : x ∈ U}. A base B of a space X is called

point-countable if, for every x ∈ X, the set {B ∈ B : x ∈ B} is at most countable.

Theorem 4.2. If X is a non-locally compact compactly-fibered coset space with a com-
pactification bX such that Y = bX \ X is the union of a finite collection η of subspaces
each of which is metrizable (or is developable, or has a point-countable base), then X is
metrizable.

Proof. Clearly, both X and Y are dense in bX, and Y is nowhere locally-compact.
Since η is finite, it follows that there exists M ∈ η and a non-empty regular closed

subset F of Y such that M∩ F is dense in F. Put B =
⋃
{S

bX
: S ⊂ M∩ F, |S| ≤ ω}.

It is easy to see that B is a countably compact subspace of bX.
Claim: B ∩ X 6= ∅. Assume the contrary. Then B is a dense subset of F.

Clearly, B is a union of a finite collection of metrizable subspaces. Since B is
countably compact, by [11], B is compact. It follows that F = B. This contradicts
the fact that Y is nowhere locally-compact.

Take a point x ∈ B ∩ X. Then there is a countable subset S of M ∩ F such that

x ∈ S
bX

. Since M ∩ F is first countable and is dense in F, we can fix, for each
y ∈ S, a countable base {Wy,n : n ∈ ω} for F at y. Let U be the interior of F in Y
and Oy,n = Wy,n ∩ U, y ∈ S, n ∈ ω. Clearly, each Oy,n is a non-empty open subset
of Y. Then it follows, for y ∈ S, that {Oy,n : n ∈ ω} is a countable π-base for Y at
y. Observe that Y is dense in bX, so bX has a countable π-base λy at each y ∈ S.
Put λ = {O ∩ X : O ∈

⋃
y∈S λy}. It is easy to verify that λ is a countable π-base

for X at x. Therefore, X is metrizable by Theorem 4.2 of [4].
The proof for the case that Y is the union of a finite family of developable

subspaces (or subspaces with point-countable bases) is similar.

Recall that an open neighbourhood assignment for a space X is a function g
from X to the topology of X such that x ∈ g(x), for every x ∈ X. A space X
is called a D-space if, for every open neighbourhood assignment g for X, there
exists a closed discrete subset D of X such that

⋃
{g(y) : y ∈ D} = X.
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Theorem 4.3. If X is a non-locally compact compactly-fibered coset space with a com-
pactification bX such that Y = bX \ X is the union of a countable collection η of sub-
spaces each of which is metrizable (or is developable, or has a point-countable base), then
either X is metrizable, or X is a C̆ech-complete paracompact p-space.

Proof. By Theorem 4.1, either Y has the Baire property, or Y is σ-compact.
If Y has the Baire property, then there exists M ∈ η such that M is somewhere

dense in Y. So we can take a non-empty regular closed subset F of Y such that

M ∩ F is dense in F. Put B =
⋃
{S

bX
: S ⊂ M ∩ F, |S| ≤ ω}. Clearly, B is a

countably compact subspace of bX. Observe that every metrizable space, every
space with a point-countable base as well as every developable space is a first-
countable hereditarily D-space. Also, a countably compact space which is the
union of a countable family of D-spaces is compact [9]. Then, a similar proof as
Theorem 4.2 shows that X is metrizable.

If Y is σ-compact, then X is C̆ech-complete. By Lemma 3.1, X is also a para-
compact p-space.

In [1, Theorem 4.5], Arhangel’skii proved that for a non-locally compact topo-
logical group G, G has a remainder that is a p-space if and only if either G is
σ-compact, or G is a Lindelöf p-space. Now we extend this result to compactly-
fibered coset spaces.

Theorem 4.4. Suppose that X is a non-locally compact compactly-fibered coset space and
bX is a compactification of X. Then the remainder Y = bX \ X is locally a p-space if and
only if either X is σ-compact, or X is a Lindelöf p-space.

Proof. Necessity. Clearly, Y is dense and nowhere locally compact in bX. By the
assumption, we can take a non-empty regular closed subset F of Y such that F
is a p-space. Let K be the closure of F in bX. Then K is a compactification of F,
and K \ F is dense in K. By [1, Corollary 3.7], there exists a Gδ-set P of K such
that F ⊂ P and every x ∈ P \ F is separated from F by a Gδ-set Px of P, i.e., for
every x ∈ P \ F, there exists a Gδ-set Px of P such that x ∈ Px ⊂ P \ F. Let O be
the interior of K \ F in X. Clearly, O is not empty. We consider the following two
cases.

Case 1: P = F. Then K \ F is a σ-compact subset of X. Since the interior of
K \ F in X is not empty, it follows from the homogeneity of X that X is locally
σ-compact. Since each p-space is of countable type, it follows that Y is locally
of countable type. Then, by [13, Lemma 2.2], Y is of countable type. Hence,
according to [10] X is Lindelöf. Therefore, X is σ-compact.

Case 2: P \ F 6= ∅. Now we have to consider two subcases.

Subcase 2(a): P ∩ O 6= ∅. Then we can take a point x ∈ P ∩ O and a Gδ-set Px

of P such that x ∈ Px ⊂ P \ F. Clearly, Px is a Gδ-set of K. Let U be the interior
of K in bX and B = Px ∩ U. Then B is a Gδ-set of bX. Since U ∩ X = O and
Px ∩ Y = ∅, it follows that x ∈ B ⊂ O. Hence, the Gδ-set B of bX is contained
in X. Let B =

⋂
n∈ω Wn, where each Wn is an open subset of bX. Then one can

construct by induction a sequence {Vn : n ∈ ω} of open neighbourhoods Vn of

x in bX such that Vn+1
bX

⊂ Vn ∩ Wn, for every n ∈ ω. Put K1 =
⋂

n∈ω Vn. Then
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K1 is a non-empty compact subset of bX such that K1 ⊂ B and K1 has a countable
neighbourhood base in bX. Hence, K1 has a countable neighbourhood base in X.
Then it follows from Lemma 3.1 that X is a paracompact p-space. Therefore, X is
a Lindelöf p-space, since X is Lindelöf.

Subcase 2(b): P∩O = ∅. Clearly, K \ P is σ-compact and O ⊂ K \ P ⊂ X. Take
a non-empty regular closed subset T of X such that T ⊂ O. Since T is a closed
subset of K \ P, T is σ-compact. Then it follows from the homogeneity of X that
X is locally σ-compact. Therefore, X is σ-compact, since X is Lindelöf.

Sufficiency. If X is σ-compact, then Y is C̆ech-complete, and hence is a p-space.
If X is a Lindelöf p-space, then Y is a Lindelöf p-space by [1, Theorem 2.1]
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