On compactly-fibered coset spaces

Hanfeng Wang Wei He

Abstract

Topological properties of compactly-fibered coset spaces are investigated.
It is proved that for a compactly-fibered coset space X with Nag(X) < , the
closure of a family of G;-sets is also a G-set in X. We also show that the
equation x(X) = mrx(X) holds for any compactly-fibered coset space X. A
Dichotomy Theorem for compactly-fibered coset spaces is established: every
remainder of such a space has the Baire property, or is o-compact.

1 Introduction

A topological group is a group G with a topology which makes the multipli-
cation and the inversion in G continuous. Algebra and topology, the two fun-
damental domains of mathematics, play complementary roles in a topological
group. Given a topological group G and its closed subgroup H, G/H stands for
the quotient space of G which consists of left cosets xH, where x € G. We call the
space G/ H so obtained a coset space. One of the main operations on topological
groups is that of taking coset spaces. Many non-trivial examples and counterex-
amples arise as quotients of relatively simple and well-known topological groups.
This operation has been the subject of an intensive and thorough study; but there
exists still a wealth of interesting open problems related to the behaviour of dif-
terent topological and algebraic properties under taking quotients. For instance,
a natural question for consideration is the following one: which homogeneous
spaces can be represented as quotients of topological groups with respect to closed
subgroups? So far only partial answers to this question are obtained.
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For a Tj topological group G and its closed subgroup H, the coset space G/H
has many interesting properties. According to [6, Theorem 1.5.1], G/H is homo-
geneous, i.e., for any two points x,y € G/H, there is a homeomorphism f of
G/ H onto itself such that f(x) = y. Moreover, G/ H is Tychonoff, and hence it is
a uniform space. If G is metrizable, then G/ H is metrizable too.

If H is compact, then G/H is called a compactly-fibered coset space.
Compactly-fibered coset spaces can be regarded as a generalization of topological
groups: if H contains only the identity of G, then G/H = G is a topological group.
It was observed that many classical results on topological groups can be extended
to a compactly-fibered coset space. However, a compactly-fibered coset space
need’t be homeomorphic to a topological group. So the study of such spaces is
not trivial. An essential investigation of compactly-fibered coset spaces was given
recently by Arhangel’skii [4], who proved among others that the product of any
family of pseudocompact compactly-fibered coset spaces is also pseudocompact.
Clearly, the similar statement for general topological spaces is no longer true.
We can conclude from this result that the Cech-Stone compactification of the
product of two pseudocompact compactly-fibered coset spaces is homeomorphic
to the product of their Cech-Stone compactifications. In [4], Arhangel’skii also
studied the remainders of compactly-fibered spaces. One of his results says that
every remainder of such a space is either pseudocompact or metric-friendly. This
improves a Dichotomy Theorem for remainders of topological groups
[2, Theorem 2.4].

In this paper we show that some results about topological groups still hold
in the class of compactly-fibered coset spaces. In Section 3 we investigate some
properties of compactly-fibered coset spaces related to Nagami numbers.
Theorem 3.5 says that every compactly-fibered coset space X with Nag(X) < T
is T-cellular. In Theorem 3.8 we show that for a compactly-fibered coset space
X with Nag(X) < 7, the closure of a family of G¢-sets is also a G¢-set in X. It
also turns out that the character of a compactly-fibered coset space coincides with
its 7t-character. In Section 4 some results about remainders of compactly-fibered
coset spaces are given. In particular, we prove a dichotomy theorem which says
that for such a space, its remainder is either c-compact, or has the Baire property.
This generalizes a result about remainders on topological groups [3, Theorem 1.1]

2 Preliminary results

In this article “a space” always stands for “Tychonoff topological space”. By a
remainder of a space X we mean the subspace bX \ X of a compactification bX of

X. For a subset A of a space X, ZX stands for the closure of A in X, also denoted
as A if no confusion is possible.

Recall that a space X is a p-space if there exists a sequence {U, : n € w} of
families U, of open subsets of the Cech-Stone compactification BX of X satisfying
the following two conditions: (a) each U, covers X, and (b) for each x € X,
NnewSt(x,Uy) C {x}, where st(x,U,) = U{U : x € U € U,}. A (Lindeldf)
paracompact p-space is the preimage of a (separable) metrizable space under a
perfect mapping. A mapping is called perfect if it is continuous, closed, and if all
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its fibers are compact.

A space X is of countable type if every compact subset P of X is contained in
a compact subset F C X that has a countable base in X. Every p-space, as well as
each metrizable space, is of countable type.

Let F be the family of all closed subsets of the Cech-Stone compactification fX
of a Tychonoff space X. The Nagami number Nag(X) of X is defined as follows:
Nag(X) =min{|P|: P C F, P separates X from BX \ X}, where P separating X
from BX \ X means that for any two points x,y such that x € X,y € X\ X, there
exists P € P such that x € Pand y ¢ P. A Tychonoff space X with Nag(X) < w
is called a Lindelof ~-space.

For an infinite cardinal 7, a G¢-set of a topological space X means a subset of
X which is the intersection of < T open subsets in X. In particular, a Gs-set of X
is the intersection of a countable family of open subsets in X.

A space X is said to be homogeneous if for each x € X and each y € X, there
exists a homeomorphism f of the space X onto itself such that f(x) = y. A regular
closed subset F of a space X means that F is the closure of some open subset of X.
A space X is called o-compact if it is the union of a countable family of compact
subsets of X.

Let P be a topological property. A space X is said to have the property P
locally if, for every x € X, there exists a neighbourhood O (not necessarily open)
of x in X such that O has the property P. Further, if P is closed hereditary, then
O can be fixed as a closed neighbourhood of x in X.

Let X be a space, F C X (or x € X) and O be a family of non-empty open
subsets of X. O is said to be a 7t-base for X at F (or x) if for every neighbourhood
U of F (or x) in X, there exists an element O € O such that O C U. O is said to be
a rt-base of X if for every non-empty open subset U of X, there exists an element
O € O such that O C U. The m-character rx(x, X) for X at x is a cardinal
defined as follows: mx(x, X) = min{|O| : O is a rt-base for X at x} + w. The
ri-character 7x(X) and the r-weight tw(X) of X are defined, respectively, as
follows: mx(X) = sup{mx(x, X) : x € X}, mw(X) = min{|O| : O is a rt-base of
X} 4 w.

Theorem 2.1. [4, Theorem 4.2] Let X be a compactly-fibered non-locally compact coset
space with a remainder Y. X is metrizable, and Y is metric-friendly if one of the two
following conditions holds.

iy The rt-character of the space Y is countable at each y € Y, and the space Y is not
countably compact.

ip The rt-character of the space X (at some point of X) is countable.

It follows from the proof of [4, Theorem 4.2] that the assumption that X is
non-locally compact is superfluous if condition i holds.

Throughout, we follow the terminology and notation from [6, 7].
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3 Topological properties of compactly-fibered coset spaces
related to Nagami humbers

Lemma 3.1 generalizes a well-known property for topological groups.

Lemma 3.1. If a compactly-fibered coset space X has a non-empty compact subset F
which has a countable base of open neighbourhoods in X, then X is a paracompact
p-space.

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q: G — G/H such that X = G/H. Then g is a perfect mapping. Since
F is a non-empty compact subset of X with a countable neighbourhood base in
X, and q is perfect, it follows that the subset g~ !(F) is a non-empty compact
subset of G with a countable base of open neighbourhoods in G. Since G is a
topological group, it follows G is of countable type. Then, by [6, Theorem 4.3.35],
G is a paracompact p-space. Therefore, X is a paracompact p-space, since X is the
image of G under the perfect mapping g (see [8]). n

We say that a space X has countable tightness if for every point x € X and
every subset A C X satisfying x € A, there is a countable subset B C A such that
x € B.

Proposition 3.2. If X is a compactly-fibered coset space of countable type and has count-
able tightness, then X metrizable.

Proof. Fix a non-empty compact subspace F of X such that X has a countable
base at F. By the assumption, F has countable tightness. According to [12], F
has countable 7r-character. Since F has a countable neighbourhood base in X, it
follows that X has countable 7r-character at each point of F. Then the homogene-
ity of X implies that X has countable 7-character. Therefore, X metrizable [4,
Theorem 4.2] [ ]

Proposition 3.3. If a compactly-fibered coset space X is the union of a finite family 1 of
metrizable subspaces, then X is metrizable.

Proof. Since 7 is finite, there exists an element M of 1 and a non-empty open
subset U of X such that M N U is dense in U. Since X is regular and M N U is
metrizable, we conclude that U has a countable base at each point of M N U. Then
it follows from the homogeneity of X and U being open that X is first countable.
Therefore, X is metrizable [4, Theorem 4.2]. [ ]

Theorem 3.4. If a compactly-fibered coset space X is locally paracompact (locally meta-
compact, locally subparacompact), then it is paracompact (metacompact, subparacom-
pact).

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G — G/H such that X = G/H. Then g is an open and perfect
mapping. Assume that X is locally paracompact. So we can take a non-empty
regular closed subset F of X such that F is paracompact. Clearly, the restriction
f=alpy: g Y(F) — F of g to g~!(F) is perfect. Since the inverse image of a
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paracompact space under a perfect mapping is also paracompact, it follows that
g~ '(F) is a paracompact subspace of G. Let U be the interior of F in X. Then

g Y(F) = ¢~ }(U) = g~(U), since g is open and F is a regular closed subset
of X. Hence, g 1(F) is a regular closed subset of G. Hence, it follows from the
homogeneity of G that G is locally paracompact. By [5, Corollary 1.2], G is para-
compact. Therefore, X is paracompact, since X is the image of G under the perfect

mapping 4.
The proof in the situation where X is locally metacompact or locally subparacom-
pact is similar. n

Theorem 3.5. For an infinite cardinal T, every compactly-fibered coset space X with
Nag(X) < tis t-cellular, i.e., for every family F of G¢-sets in X, there exists a subfam-
ily P of F with |P| < T such that \J P is dense in |J F.

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G — G/H such that X = G/H. Since g is perfect, it follows from
[6, Proposition 5.3.6] that Nag(G) = Nag(X) < 7. Suppose that F is a family of
Gr-sets in X. Clearly, {g~(F) : F € F} is also a family of G-sets in G. Since
each topological group with the Nagami number < 7 is 7-cellular [6, Theorem
5.3.18], there exists a subfamily 7 of {g~!(F) : F € F} such that |J T is dense in
U{g ' (F) : F € F} and |T| < 7. Therefore, J{q(T) : T € T} is dense in |J F,

since g is continuous. |

Corollary 3.6. If a compactly-fibered coset space X is a Lindelof X-space, then X is
w-cellular. In particular, X has countable cellularity.

A sequence {U, : n € w} of families U, of subsets of a space Y is called
o-disjoint if for each n € w, any two elements of I/, are disjoint as subsets of Y.

Corollary 3.7. If a compactly-fibered coset space X is a Lindelof Y-space and has a
o-disjoint rt-base, then X is separable and metrizable.

Proof. By Corollary 3.6, X has countable cellularity. Then it follows from X having
a o-disjoint 77-base that X has a countable 7r-base. Therefore, X is separable and
metrizable. n

Theorem 3.8. Let IT = [;c; X; be a product of a family {X; : i € I} of compactly-
fibered coset spaces satisfying Nag(X;) < T foreachi € I, where T is an infinite cardinal.
Then 11 is T-cellular.

Proof. For each i € I, fix a topological group G;, a compact subgroup H; of G;,
and the quotient mapping gq; : G; — G;/H, such that X; = G;/H;. Since each g; is
perfect and Nag(X;) < 7, it follows that Nag(G;) < 7. According to [6, Theorem
5.3.30], [T;c; Gi is T-cellular. Therefore, I1 is T-cellular, since II is the image of
[ ;e Gi under the perfect mapping [];c; 4:- |

Corollary 3.9. Suppose that X = [l;c; X; is a product of a family {X; : i € I} of
compactly-fibered coset spaces and each X; is a Lindeldf X-space, then X has countable
cellularity.
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Theorem 3.10. Let X be a compactly-fibered coset space with Nag(X) < T, where T is
an infinite cardinal. If F is a family of Gr-sets in X, then the closure of |J F is also a
Gr-set in X.

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G — G/H such that X = G/H. Suppose that F is a family of
Gr-sets in X. Clearly, {g~!(F) : F € F} is a family of G;-sets in G. Since G is
a topological group with Nag(G) < 7, it follows from [6, Theorem 5.3.26] that
the closure J{g~1(F) : F€ F} of U{g ' (F) : F € F}isa Gsetin G. Put A =
U{g~Y(F) : F € F}. So there is a family of open subsets {O, : « < 7} of G such
that A = Ny« Ox. For each « < T and x € G\ O,, choose open neighbourhoods
Uy and V, x of the identity e of G such that xU,x N A = @ and V,,%x C Uy
Clearly, for each & < T, the family {xV, » : x € G\ O, } of open subsets of G covers
the closed subset G \ O, of G. Then there exists a subset B, of G\ O, such that
G\ Oy C U{xVyyx : x € By} and |B,| < 7, since the Lindelof number I(G) of G is
no larger than the Nagami number Nag(G) of G. Putv = {xV, » : x € By, &« < T}.
Clearly, [v| < tand Jv = G\ A.

Claim 1: Foreach A C v, |A| < w,UANA = @.

Since A is finite, there exists n € w such that A = {x;V,,, : i < n}. Choose a
symmetric open neighbourhood V of the identity e of G such that V C ;,, Vi, x;-
Then UANA € (UMVTINA = (Uicn %iVayr, V) NA C (Uicn xiV2 1) NA C
(Uicn il x,) N A = @. The claim is verified.

Puty = {G\UA: A Cv,|A| < w}. Clearly, |u| < Tand N = A. Since g is
open, \p=A=U{q (F): F€ F} =q (UF). Thus, q(Np) = q(A) =U

Now, it remains to prove the following equation.

Claim 2: (N p) = Noeu 9(0)-

Clearly, (N 1) C Noeu9q(O) holds, so it suffices to show the converse. Take
a point x of G such that x ¢ A. Clearly, xH N A = @, since A is the union of
some left cosets of H in G. Since xH is a compact subset of G and v covers G \ A4,
there exists a finite set A of v such that xH C |JA. Thus, g(x) ¢ q(G \ UA). Since
G\UA € p, it follows that q(x) & Nocy 4(O). The claim is verified. =

A subset F of a space X is called a zero-set in X, if there exists a real-valued
function f on X such that F = f~1(0).

Corollary 3.11. Let X be a compactly-fibered coset space. If X is a Lindelof X-space, then
every regular closed subset of X is a zero-set in X.

Proof. Fix a regular closed subset F of X, i.e., F is the closure of some open subset
of X. Clearly, every open subset of X is a Gs-set of X. Then, by Theorem 3.8, F is
a G;-set of X. Since X is a normal space, it follows that F is a zero-set in X. m

Theorem 3.12. For every compactly-fibered coset space X, x(X) = mx(X).

Proof. Fix a topological group G, a compact subgroup H of G, and the quotient
mapping q : G — G/H such that X = G/H.
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Clearly, mx(X) < x(X). It suffices to prove the converse. Assume that
k = rtx(X) and take a family {U, : « < x} of non-empty open subsets of X
such that {U, : « < «x} is a 7-base for X at q(e), where e is the identity of G. Since
q is perfect, it follows that A = {g~1(U,) : « < x} is a 7t-base for G at H.

Claim: The family y = {g(OO~!) : O € A} is a base for X at g(e).

Clearly, OO~! is an open neighbourhood of e in G, for each O € A. Since g
is open, each ¢(OO~!) is an open neighbourhood of g(e) in X. For any neigh-
bourhood V of g(e), g~ (V) is a neighbourhood of H in G. Since G is a topolog-
ical group, the mapping f : G x G — G of the product G x G to G defined by
f(u,v) = u~lvis continuous. Observe that H is compactand f(H,H) = H 'H =
H C g~ '(V). By the Wallace Theorem, we can find two open subsets Oy, O, of G
such that H x H C Oy x Oy C f~1(q~1(V)). Therefore, H C O;'0, C g7 1(V).
Since the family A is a 7-base for G at H, we can find O € A such thatO C O;NOx,.
Thus, OO~ ! € ¢~ 1(V), which implies that (OO~!) C V. Therefore, u is a base
for X at g(e). The claim is verified.

Clearly, |u| < x. Since X is homogeneous, we have that x(X) < mx(X). u

4 Remainders of compactly-fibered coset spaces

The following result extends a Dichotomy Theorem for remainders of topological
groups to compactly-fibered coset spaces. The technique used in the proof is due
to Arhangel’skii.

Theorem 4.1. For a compactly-fibered coset space X, each remainder of X either has the
Baire property, or is o-compact.

Proof. If X is locally compact, then each remainder of X is compact having the
Baire property and also being o-compact.

Assume now that X is non-locally compact. Since X is homogeneous, we have
that X is nowhere locally-compact. Let bX be a compactification of X such that
the remainder Y = bX \ X does not have the Baire property. Then, there exists
a sequence {O,, : n € w} of open subsets of Y such that each O, is dense in Y
and (N, Ox is not dense in Y. Observe that Y is dense in bX, so there is a se-
quence {U, : n € w} of open subsets of bX and a non-empty open subset V of

bX such that VNN, co Onbx =Qand U, NY = Oy, for eachn € w. Itis easy to
see that (,,c,, Uy is Cech-complete and is dense in bX. Clearly, V N (N, Un) =
(VN X) N (Nyew Un)- Hence, V N (N,e Un) is a non-empty Cech-complete sub-
space of X and is dense in V N X. Since X is homogeneous, it follows that, for
each non-empty open subset U of X, we can take a non-empty open subset W
contained in U and a Cech-complete subspace S of W such that S is dense in W.
By Zorn’s Lemma, there exists a maximal disjoint family # of non-empty open
subsets of X such that each element of 7 contains a dense Cech-complete sub-
space. Clearly, |J 7 is dense in X. For each U € # fix an open subset bU of bX and
a Cech-complete subspace Fy; of U such that bU N X = U and F is dense in U.
Note that Fy; is dense in blU, so there exists a countable family {O,(U) : n € w}
of open subsets O,(U) of bU such that Fy = (¢, On(U). Put F = Uy, Fu and
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Wi = Uuey, On(U), for n € w. Then it follows from {bU : U € 17} being disjoint
that F = (,,c, Wx. Since each W, is dense in Uuey bU and Uuey bU is dense in

bX, each W, is dense in bX. Therefore, F is a dense Cech-complete subspace of
bX and is contained in X.

Fix a topological group G, a compact subgroup H of G, and the quotient map-
ping g : G — G/H such that X = G/H. Since g is a continuous open mapping,
g Y(F) = ¢ Y(F) = g Y(X) = G. Hence, g~ !(F) is dense in G. Since q is per-
fect, q_l(F ) is Cech-complete. Then, by [3, Theorem 1.2], G is Cech-complete.
Thus, X is Cech-complete, since X is the image of G under the perfect mapping
g. Therefore, Y is o-compact. n

Recall that a regular space X is developable if there exists a sequence of open
covers {U, : n € w} of X such that, for every x € X, {st(x,U,) : n € w} is a base
for X at x, where st(x,U,) = U{U € U, : x € U}. A base B of a space X is called
point-countable if, for every x € X, the set {B € B : x € B} is at most countable.

Theorem 4.2. If X is a non-locally compact compactly-fibered coset space with a com-
pactification bX such that Y = bX \ X is the union of a finite collection 1 of subspaces
each of which is metrizable (or is developable, or has a point-countable base), then X is
metrizable.

Proof. Clearly, both X and Y are dense in bX, and Y is nowhere locally-compact.
Since 7 is finite, it follows that there exists M € 1 and a non-empty regular closed

subset F of Y such that M N F is dense in F. Put B = U{?bX :SC MNF,|S| < w}.
It is easy to see that B is a countably compact subspace of bX.

Claim: BN X # @. Assume the contrary. Then B is a dense subset of F.
Clearly, B is a union of a finite collection of metrizable subspaces. Since B is
countably compact, by [11], B is compact. It follows that F = B. This contradicts
the fact that Y is nowhere locally-compact.

Take a point x € BN X. Then there is a countable subset S of M N F such that

x € gbx. Since M N F is first countable and is dense in F, we can fix, for each
y € S, a countable base {W,,, : n € w} for F aty. Let U be the interior of F in Y
and Oy, = Wy, NU,y € §,n € w. Clearly, each Oy , is a non-empty open subset
of Y. Then it follows, for y € S, that {O,, : n € w} is a countable 7r-base for Y at
y. Observe that Y is dense in bX, so bX has a countable 7-base A, ateach y € S.
Put A = {ONX:0 € UyesAy}. Itis easy to verify that A is a countable 7-base
for X at x. Therefore, X is metrizable by Theorem 4.2 of [4].

The proof for the case that Y is the union of a finite family of developable
subspaces (or subspaces with point-countable bases) is similar. n

Recall that an open neighbourhood assignment for a space X is a function g
from X to the topology of X such that x € g(x), for every x € X. A space X
is called a D-space if, for every open neighbourhood assignment ¢ for X, there
exists a closed discrete subset D of X such that U{g(y) : y € D} = X.
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Theorem 4.3. If X is a non-locally compact compactly-fibered coset space with a com-
pactification bX such that Y = bX \ X is the union of a countable collection 1 of sub-
spaces each of which is metrizable (or is developable, or has a point-countable base), then
either X is metrizable, or X is a Cech-complete paracompact p-space.

Proof. By Theorem 4.1, either Y has the Baire property, or Y is c-compact.
If Y has the Baire property, then there exists M € 7 such that M is somewhere
dense in Y. So we can take a non-empty regular closed subset F of Y such that

MNF is dense in F. Put B = U{gbx :S C MNF,|S| < w}. Clearly, Bis a
countably compact subspace of bX. Observe that every metrizable space, every
space with a point-countable base as well as every developable space is a first-
countable hereditarily D-space. Also, a countably compact space which is the
union of a countable family of D-spaces is compact [9]. Then, a similar proof as
Theorem 4.2 shows that X is metrizable.

If Y is o-compact, then X is Cech-complete. By Lemma 3.1, X is also a para-
compact p-space. ]

In [1, Theorem 4.5], Arhangel’skii proved that for a non-locally compact topo-
logical group G, G has a remainder that is a p-space if and only if either G is
o-compact, or G is a Lindel6f p-space. Now we extend this result to compactly-
tibered coset spaces.

Theorem 4.4. Suppose that X is a non-locally compact compactly-fibered coset space and
bX is a compactification of X. Then the remainder Y = bX \ X is locally a p-space if and
only if either X is o-compact, or X is a Lindelof p-space.

Proof. Necessity. Clearly, Y is dense and nowhere locally compact in bX. By the
assumption, we can take a non-empty regular closed subset F of Y such that F
is a p-space. Let K be the closure of F in bX. Then K is a compactification of F,
and K \ F is dense in K. By [1, Corollary 3.7], there exists a Gs-set P of K such
that F C P and every x € P\ F is separated from F by a Gs-set Py of P, i.e., for
every x € P\ F, there exists a Gs-set Py of P such that x € Py C P\ F. Let O be
the interior of K \ F in X. Clearly, O is not empty. We consider the following two
cases.

Case 1: P = F. Then K\ F is a o-compact subset of X. Since the interior of
K\ F in X is not empty, it follows from the homogeneity of X that X is locally
o-compact. Since each p-space is of countable type, it follows that Y is locally
of countable type. Then, by [13, Lemma 2.2], Y is of countable type. Hence,
according to [10] X is Lindelof. Therefore, X is o-compact.

Case 2: P\ F # @. Now we have to consider two subcases.

Subcase 2(a): PN O # @. Then we can take a point x € PN O and a G;-set Py
of P such that x € P, C P\ F. Clearly, Py is a Gs-set of K. Let U be the interior
of Kin bX and B = P, NU. Then B is a Gs-set of bX. Since UN X = O and
PyNY = @, it follows that x € B C O. Hence, the Gs-set B of bX is contained
in X. Let B = (,,cx Wi, where each W, is an open subset of bX. Then one can
construct by induction a sequence {V;, : n € w} of open neighbourhoods V,, of

x in bX such that Vngx C VuN'W,, for every n € w. Put Ky = (¢, Vu. Then
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K is a non-empty compact subset of bX such that K; C B and K has a countable
neighbourhood base in bX. Hence, K; has a countable neighbourhood base in X.
Then it follows from Lemma 3.1 that X is a paracompact p-space. Therefore, X is
a Lindelof p-space, since X is Lindelof.

Subcase 2(b): PNO = @. Clearly, K \ P is o-compactand O C K\ P C X. Take
a non-empty regular closed subset T of X such that T C O. Since T is a closed
subset of K\ P, T is o-compact. Then it follows from the homogeneity of X that
X is locally o-compact. Therefore, X is c-compact, since X is Lindelof.

Sufficiency. If X is c-compact, then Y is Cech-complete, and hence is a p-space.
If X is a Lindelof p-space, then Y is a Lindelof p-space by [1, Theorem 2.1] n

Acknowledgment The authors would like to thank the referee for his/her
helpful comments and suggestions to improve this paper.

References

[1] A. V. Arhangel’skii, Remainders in compactifications and generalized
metrizability properties, Topology Appl. 150 (2005), 79-90.

[2] A. V. Arhangel’skii, Two types of remainders of topological groups, Com-
ment. Math. Univ. Carolin. 49 (2008), 119-126.

[3] A.V.Arhangel’skii, The Baire properties in remainders of topological groups
and other results, Comment. Math. Univ. Carolin. 50 (2009), 273-279.

[4] A. V. Arhangel’skii, A Dichotomy Theorem and other results for a class of
quotients of topological groups, Topology Appl. 215 (2017), 1-10.

[5] A. V. Arhangel’skii and V. V. Uspenskij, Topological groups: local versus
global, Appl. General Topology 7 (2006), 67-72.

[6] A. V. Arhangel’skii and M. Tkachenko, Topological Groups and Related
Structures, Atlantis Press, Amsterdam-Paris, 2008.

[7] R. Engelking, General Topology (Revised and completed edition), Helder-
mann Verlag Berlin, 1989.

[8] V. V. Filippov, On perfect images of paracompact p-spaces, Sov. Math. Dokl.
176 (1967), 533-536.

[9] ]J. Gerlits, L. Juhasz and Z. Szentmiklossy, Two improvements on Tkacenko’s
addition theorem, Comment. Math. Univ. Carol. 46 (2005), 705-710.

[10] M. Henriksen and J. R. Isbell, Some properties of compactifications, Duke
Math. J. 25 (1958), 83-106.

[11] A. Ostaszewski, Compact o-metric spaces are sequential, Proc. Amer. Math.
Soc. 68 (1978), 339-343.



On compactly-fibered coset spaces 411

[12] B. E. Shapirovskij, On m-character and 7r-weight of compact Hausdorff
spaces, Sov. Math. Dokl. 16 (1975) 999-1003.

[13] H. F. Wang and W. He, Remainders and cardinal invariants, Topology Appl.
164 (2014), 14-23.

Department of Mathematics,
Shandong Agricultural University,
Taian 271018, China

email: whfeng@sdau.edu.cn

Institute of Mathematics,
Nanjin Normal University,
Nanjin 210046, China
email : weihe@njnu.edu.cn



