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Abstract

By using Nevanlinna theory and linear algebra, we show that the number
one is a lower bound of the hyper-order of any meromorphic solution of a
non-linear delay differential equation under certain conditions.

1 Introduction

Nevanlinna theory is the value distribution theory established by R. Nevanlinna,
it is a very useful tool for studying both the growth of meromorphic functions in
the complex plane C and meromorphic solutions of differential equations. The
well-known mathematician K. Yoshida [18] applied the Nevanlinna theory to ex-
tend Malmquist’s celebrated work [14] in showing that a first order algebraic
differential equation of the form y′ = R(z, y), where R is a rational function in
y with polynomial coefficients in z, admits a meromorphic (i.e., global) solution,
then it must reduce to a Riccati equation. N.Steinmitz [15], Bank and Kaufman
[1] independently extended earlier works of Hermite and Painlevé on first order
algebraic differential equations (y′)m = P(y) when the corresponding algebraic
curves have genus 0 or 1 by using Nevanlinna theory.

The classification of y′′ = R(z, y, y′) that would yield Painlevé’s (I-V) equa-
tions has yet to be completed. Recently, A. Eremenko and A. Gabrielov [6],
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Conte, Ng and Wong [4], etc have successfully derived meromorphic solutions
out of a set of nonlinear PDE with wide range of physical applications by com-
bining Nevanlinna theory and local series analysis. On the other hand, also
recently, Halburd and Korhonen [8] showed, again using Nevanlinna theory, that
if the difference equation y(z + 1) + y(z − 1) = R(z, y) (e.g. R rational in both
arguments) admits a finite order meromorphic solution, then the equations must
reduce to one of the known discrete-Painlevé equations. In this paper, we study
the growth of any meromorphic solution of a non-linear delay differential (or
differential difference) equation under certain conditions.

2 Main Results

Take positive integers t and k. For t + 1 complex numbers c0(= 0), c1, ..., ct, it is
an interesting question to study properties of entire (or meromorphic) solutions
of differential (or difference, or differential-difference) equations in the complex
plane C,

P( f ) = ∑
I∈I

aI

(
f(k)
)I

= ∑
I

aI

t

∏
l=0

(
f
(k)
cl

)Il
= 0, (2.1)

where k = (0, 1, ..., k); I = (I0, ..., It), Il = (il0, il1, ..., ilk) are multi-indices of non-

negative integers Z+; I is a finite set of Z
(t+1)(k+1)
+ ; f = ( fc0 , ..., fct) in which fcl

is

defined by fcl
(z) = f (z + cl); f

(k)
cl

=
(

fcl
, f ′cl

, ..., f
(k)
cl

)
; aI are non-zero meromor-

phic functions in C; and where

(
f
(k)
cl

)Il
= f

il0
cl

(
f ′cl

)il1
· · ·
(

f
(k)
cl

)ilk
.

Obviously, this kind of problems are closely related to those of delay differen-
tial equations. For example, some authors (cf. [7]) are concerned with an investi-
gation of the asymptotic behavior, as t → ∞ of positive nonconstant solutions of
the autonomous delay differential equation

dx(t)

dt
= x(t)

{
a −

n

∑
j=1

bjx(t − τj)

}
; t ≥ 0 (2.2)

and several of its variants where a, bj, τj (j = 1, ..., n) are positive constants, or the
stability and fundamental theory of delay (or functional) differential equations
(see, e.g., [5], [10]).

Many complex analysts have investigated some special cases of the question
(2.1) by using value distribution theory of Nevanlinna (see e.g. [2], [3]). In partic-
ular, fixed a polynomial p( 6≡ 0) and considered

f n(z) + p(z) f (z + c) =
s

∑
l=1

βle
αlz, (2.3)

which is also called a difference equation of f by some complex analysts, under
the following assumptions:
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(A) Fix c ∈ C. Take positive integers n, s with n ≥ s + 2. Let β1, β2, ..., βs be non-
zero constants and let α1, α2, ..., αs be distinct non-zero constants satisfying
αi
αj

6= n for all i, j ∈ {1, 2, ..., s}. When s ≥ 5, one further assumes that

nαl (5 ≤ l ≤ s) are not linear combinations of α1, ..., αs with the weight n
over {0, 1, ..., n − 1}, that is,

nαl 6= 〈m̂, α〉 =
s

∑
j=1

mjαj, l = 5, · · · , s,

where m̂ = (m1, m2, · · · , ms) ∈ {0, 1, ..., n − 1}s and |m̂| = n.

Zhang and Huang [19] proved that any meromorphic solution f on C of the func-
tional equation (2.3) must satisfy σ2( f ) ≥ 1, where σ2( f ) is the hyper-order of f
defined by the Nevanlinna characteristic function T(r, f )

σ2( f ) = lim sup
r→∞

log log T(r, f )

log r
.

In this paper, we will extend the result of Zhang and Huang mentioned above
to the following delay differential equation on f

f n(z) f (k)(z) + p(z) f (z + c) =
s

∑
l=1

βle
αl z, (2.4)

which also is called a differential-difference equation of f by some complex ana-
lysts, under the following assumptions:

(B) Fix c ∈ C. Take positive integers n, s, k with n ≥ s+ 2. Let β1, β2, ..., βs be non-
zero constants and let α1, α2, ..., αs be distinct non-zero constants satisfying
αi
αj

6= n + 1 for all i, j ∈ {1, 2, ..., s}. When s ≥ 5, one further assumes that

(n+ 1)αl (5 ≤ l ≤ s) are not linear combinations of α1, ..., αs with the weight
n + 1 over {0, 1, ..., n}, that is,

(n + 1)αl 6= 〈m, α〉 =
s

∑
j=1

mjαj, l = 5, · · · , s,

where m = (m1, m2, · · · , ms) ∈ {0, 1, ..., n}s and |m| = n + 1.

In this paper, we prove the following theorem:

Theorem 2.1. If p( 6≡ 0) is a polynomial, then any meromorphic solution f on C of the
delay differential equation (2.4) under the assumptions (B) must satisfy σ2( f ) ≥ 1.

If n < 1 + s, the following example shows Theorem 2.1 is not true.

Example 2.2. The delay differential equation

f 4(z) f ′(z)− 2 f
(

z +
π

2

)
= ie5iz + 3ie3iz − 3ie−3iz − ie−5iz

has an entire solution
f (z) = eiz + e−iz

with σ2( f ) = 0. For this case, we have 4 = n < s + 1 = 5.
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The following example 2.3 shows that the condition αi
αj

6= n + 1 for all

i, j ∈ {1, 2, ..., s} is necessary.

Example 2.3. For k ≥ 1, the delay differential equation

f 4(z) f (k)(z)− f (z + 6πi) = 3−ke
5
3 z − e

z
3

has an entire function with σ2( f ) = 0,

f (z) = e
1
3 z.

3 Preliminaries

We assume that the reader is familiar with the standard notations and funda-
mental results in Nevanlinna theory (see, e.g., [11], [17]). The hyper-exponent of
convergence of poles of f is defined by

λ2

(
1

f

)
= lim sup

r→∞

log log N(r, f )

log r
= lim sup

r→∞

log log n(r, f )

log r
.

We denote by S(r, f ) any real function of growth o(T(r, f )) as r → ∞ outside of
a possible exceptional set of finite logarithmic measure. A meromorphic function
α on C is said to be a small function of f if T(r, α) = S(r, f ). The function P( f )
defined by left side of (2.1) is called a differential-difference polynomial of f if the
coefficients aI are small functions of f .

The first Lemma is referred to [13, Lemma2.2].

Lemma 3.1. Let f be a non-constant meromorphic function, let c, h be two complex
numbers such that c 6= h. If σ2( f ) < 1, then

m

(
r,

fh

fc

)
= S(r, f ),

for all r outside a set of finite logarithmic measure, where fh(z) = f (z + h), fc(z) =
f (z + c).

Take complex numbers d0(= 0), d1, ..., dt. Let R( f ) be a differential-difference
polynomial of f defined by

R( f ) = ∑
J∈J

bJ

t

∏
l=0

(
f
(k)
dl

)Jl
, (3.1)

where k = (0, 1, ..., k); J = (J0, ..., Jt), Jl = (jl0, jl1, ..., jlk) are multi-indices of non-

negative integers Z+; J is a finite set of Z
(t+1)(k+1)
+ , and where bJ are non-zero

small functions of f . For complex numbers e0(= 0), e1, ..., et, we use Q( f ) to de-
note a difference polynomial of f as follows:

Q( f ) = ∑
K∈K

CK f K0
e0

· · · f Kt
et

, (3.2)
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where K = (K0, ..., Kt) are multi-indices of non-negative integers Z+; K is a finite

set of Z
t+1
+ , and where CK are non-zero small functions of f . Next we consider

the following equation
R( f )Q( f ) = P( f ), (3.3)

P( f ) is a differential-difference polynomial defined by the left side of (2.1).
The second lemma is a variant of the result due to Laine and Yang [12].

Lemma 3.2. Let f be a transcendental meromorphic solution of hyper-order σ2( f ) < 1
of the equation (3.3) with deg P( f ) ≤ deg Q( f ). Assume that there is only unique
monomial of degree deg Q( f ) in Q( f ). Then,

m(r, R( f )) = S(r, f )

holds possibly outside an exceptional set of finite logarithmic measure.

Proof. Set n = deg Q( f ) and put

|I| = |I0|+ · · ·+ |It|, |Il| = il0 + · · ·+ ilk.

Note that
deg P( f ) = max

I∈I
|I| ≤ deg Q( f ) = max

K∈K
|K|. (3.4)

Rewrite Q( f ) into the following form

Q( f ) =
n

∑
η=0

C̃η f η , (3.5)

where

C̃η = ∑
|K|=η

CK

(
fe0

f

)K0

· · ·

(
fet

f

)Kt

.

In particular, by the assumption, we have

C̃n = CK

(
fe0

f

)K0

· · ·

(
fet

f

)Kt

with |K| = n. By Lemma 3.1, we obtain

m
(

r, C̃η

)
= S(r, f ), η = 0, ..., n (3.6)

for ε > 0 small enough, as well as

m

(
r,

1

C̃n

)
= S(r, f ), (3.7)

for all r outside a set of finite logarithmic measure.
Making use of the reasoning in [16], we first define

c̃(z) := max
1≤η≤n


1, 2

∣∣∣∣∣
C̃n−η

C̃η

∣∣∣∣∣

1
η


 . (3.8)
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Although c̃ is not meromorphic, however we may estimate m(r, c̃),

m(r, c̃) ≤
n

∑
η=0

m
(

r, C̃η

)
+ m

(
r,

1

C̃n

)
+ O(1) = S(r, f ).

Take z ∈ C and write z = reiθ. Set

E1 :=
{

θ ∈ [0, 2π) :
∣∣∣ f (reiθ)

∣∣∣ ≤ c̃(reiθ)
}

, E2 := [0, 2π)\E1. (3.9)

In the set E1, we have the following estimate

|R( f )| ≤ ∑
J∈J

∣∣bJ

∣∣ | f ||J|
t

∏
l=0

∣∣∣∣
fdl

f

∣∣∣∣
jl0

· · ·

∣∣∣∣∣∣

f
(k)
dl

f

∣∣∣∣∣∣

jlk

≤ ∑
J∈J

∣∣bJ

∣∣ |c̃||J|
t

∏
l=0

∣∣∣∣
fdl

f

∣∣∣∣
jl0

· · ·

∣∣∣∣∣∣

f
(k)
dl

f

∣∣∣∣∣∣

jlk

≤ |c̃|ς ∑
J∈J

∣∣bJ

∣∣
t

∏
l=0

∣∣∣∣
fdl

f

∣∣∣∣
jl0

· · ·

∣∣∣∣∣∣

f
(k)
dl

f

∣∣∣∣∣∣

jlk

,

(3.10)

where
ς = deg R( f ) = max

J∈J
|J|.

In the set E2, noting that

| f | > c̃ ≥ 2

∣∣∣∣∣
C̃n−η

C̃n

∣∣∣∣∣

1
η

,

and hence ∣∣∣∣∣
C̃n−η

C̃n

∣∣∣∣∣ ≤
| f |η

2η

for η = 1, ..., n, which means

|Q( f )| =

∣∣∣∣∣
n

∑
η=0

C̃η f η

∣∣∣∣∣ ≥
∣∣∣C̃n f n

∣∣∣
(

1 −
n

∑
η=1

|C̃n−η|

|C̃n f η |

)
≥

∣∣∣C̃n

∣∣∣ | f |n

2n
,

we also obtain an estimate

|R( f )| =

∣∣∣∣
P( f )

Q( f )

∣∣∣∣ ≤
2n

∣∣∣C̃n

∣∣∣ | f |n
∑
I∈I

|aI| | f |
|I|

t

∏
l=0

∣∣∣∣
fcl

f

∣∣∣∣
il0

· · ·

∣∣∣∣∣
f
(k)
cl

f

∣∣∣∣∣

ilk

=
2n
∣∣∣C̃n

∣∣∣
∑
I∈I

|aI|| f |
|I|−n

t

∏
l=0

∣∣∣∣
fcl

f

∣∣∣∣
il0

· · ·

∣∣∣∣∣
f
(k)
cl

f

∣∣∣∣∣

ilk

≤
2n
∣∣∣C̃n

∣∣∣
∑
I∈I

|aI|
t

∏
l=0

∣∣∣∣
fcl

f

∣∣∣∣
il0

· · ·

∣∣∣∣∣
f
(k)
cl

f

∣∣∣∣∣

ilk

,

(3.11)



Meromorphic Solutions of Non-linear Delay Differential Equations 137

since |I| ≤ deg(P( f )) ≤ n and | f | ≥ 1.
Combing (3.10) and (3.11), we obtain a complete estimate

|R( f )| ≤|c̃|ς ∑
J∈J

∣∣bJ

∣∣
t

∏
l=0

∣∣∣∣
fdl

f

∣∣∣∣
jl0

· · ·

∣∣∣∣∣∣

f
(k)
dl

f

∣∣∣∣∣∣

jlk

+
2n
∣∣∣C̃n

∣∣∣
∑
I∈I

|aI|
t

∏
l=0

∣∣∣∣
fcl

f

∣∣∣∣
il0

· · ·

∣∣∣∣∣
f
(k)
cl

f

∣∣∣∣∣

ilk

,

which yields immediately

m(r, R( f )) ≤ςm(r, c̃) + m

(
r,

1

C̃n

)
+ ∑

I∈I

m(r, aI) + ∑
J∈J

m(r, bJ)

+ ∑
I∈I

t

∑
l=0

[
il0m

(
r,

fcl

f

)
+ · · ·+ ilkm

(
r,

f
(k)
cl

f

)]

+ ∑
J∈J

t

∑
l=0

[
jl0m

(
r,

fdl

f

)
+ · · ·+ jlkm


r,

f
(k)
dl

f



]
+ O(1).

Note that

m

(
r,

f
(υ)
δ

f

)
≤ m

(
r,

f
(υ)
δ

f (υ)

)
+ m

(
r,

f (υ)

f

)
, δ ∈ C, υ = 1, 2, · · · , k.

Applying (3.7), (3.9), Lemma 2.1 and logarithmic derivative lemma to the inequal-
ity on m(r, R( f )), it follows that

m(r, R( f )) = S(r, f )

since aI, bJ are small functions of f . Hence Lemma 3.2 is proved.

To state next lemma, we introduce some notations. The determinant

Vn0 =

∣∣∣∣∣∣∣∣

1 1 · · · 1
d1 d2 · · · dn

· · · · · · · · · · · ·
dn−1

1 dn−1
2 · · · dn−1

n

∣∣∣∣∣∣∣∣

is called the principal Vandermondian, which is determined by

Vn0 = ∏
1≤j<i≤n

(di − dj).

For every k = 1, 2, ..., n − 1, the determinant

Vnk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
d1 d2 · · · dn

· · · · · · · · · · · ·

dn−k−1
1 dn−k−1

2 · · · dn−k−1
n

dn−k+1
1 dn−k+1

2 · · · dn−k+1
n

· · · · · · · · · · · ·
dn

1 dn
2 · · · dn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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is called the secondary Vandermondian. The coefficients Gk defined by

(x − d1) · · · (x − dn) = xn +
n

∑
k=1

(−1)kGkxn−k

are called elementary (or fundamental) symmetric functions (or polynomials) of
d1, ..., dn. The following lemma establishes a relationship between Vn0 and Vnk,
which is referred to [9].

Lemma 3.3. The k-th elementary symmetric function Gk of the n variables d1, d2, ..., dn

is equal to the quotient of the secondary Vandermondian Vnk by the principal Vander-
mondian Vn0.

In the final lemma, the elementary row transformations consist of the follow-
ing three cases: (i) switch two rows; (ii) multiply a row by a non-zero number;
(iii) add to a row by a multiple of another row.

Lemma 3.4. Take positive integers n, k and s with n ≥ 2. Let cl(1 ≤ l ≤ s) be constants
and let bj(1 ≤ j ≤ 4) be rational functions. If there exist distinct nonzero constants
αl(1 ≤ l ≤ s) satisfying (n + 1)αj 6= αl(1 ≤ j ≤ 4, 1 ≤ l ≤ s) such that

(
4

∑
j=1

bj(z)e
αjz

)n
4

∑
j=1

αk
j bj(z)e

αjz =
s

∑
l=1

cle
αlz (3.12)

holds, then we have bj = 0(1 ≤ j ≤ 4).

Proof. It follows from (3.12) that

s

∑
l=1

cle
αlz =

4

∑
j=1

αk
j bn+1

j (z)e(n+1)αjz + ∑
|m̃|=n+1

cm̃(z)e〈m̃,α̃〉z, (3.13)

where m̃ = (m1, m2, m3, m4) ∈ {0, 1, ..., n}4, cm̃ are rational functions, and

〈m̃, α̃〉 =
4

∑
j=1

mjαj.

Now we claim that there is some i ∈ {1, 2, 3, 4} such that (n + 1)αi is not a linear
combination of α1, ..., α4 with the weight n + 1 over {0, 1, ..., n}. Otherwise, for
each i ∈ {1, 2, 3, 4} there exist non-negative integers dij ∈ {0, 1, ..., n}(j = 1, 2, 3, 4)
with di1 + di2 + di3 + di4 = n + 1, such that





(n + 1)α1 = d11α1 + d12α2 + d13α3 + d14α4,

(n + 1)α2 = d21α1 + d22α2 + d23α3 + d24α4,

(n + 1)α3 = d31α1 + d32α2 + d33α3 + d34α4,

(n + 1)α4 = d41α1 + d42α2 + d43α3 + d44α4.

(3.14)

Next we will deduce a contradiction from the system (3.14).
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If there is some i ∈ {1, 2, 3, 4} such that only one of three integers dij (j 6= i)
is greater than zero, say d21 > 0, so that d2j = 0 (j 6= 2), then from the second
equation of system (3.14), we see (n + 1− d22)α2 = d21α1. Since d21 + d22 = n + 1
and d21 6= 0, we obtain α1 = α2. This is a contradiction.

Hence for each i ∈ {1, 2, 3, 4}, at least two of three integers dij (j 6= i) are
greater than zero, so that when j 6= i, we have dij < n + 1 − dii. We rewrite the
system (3.14) as follows:





(d11 − n − 1)α1 + d12α2 + d13α3 + d14α4 = 0,

d21α1 + (d22 − n − 1)α2 + d23α3 + d24α4 = 0,

d31α1 + d32α2 + (d33 − n − 1)α3 + d34α4 = 0,

d41α1 + d42α2 + d43α3 + (d44 − n − 1)α4 = 0,

(3.15)

and denote the matrix of coefficients of system (3.15) by

B =




d11 − n − 1 d12 d13 d14

d21 d22 − n − 1 d23 d24

d31 d32 d33 − n − 1 d34

d41 d42 d43 d44 − n − 1


 .

Then we claim that the rank of B is 3.
Adding columns 2, 3 and 4 to column 1, and noting that di1 + di2 + di3 + di4 =

n + 1(i = 1, 2, 3, 4), we find det(B) = 0. Next we discuss minor determinants of
order 3 in B by distinguishing two cases.

Case 1. d13 = d23 = d43 = 0.
This case implies d12 > 0, d14 > 0, d21 > 0, d24 > 0, d41 > 0, d42 > 0. For the

3 × 3 submatrix

B1 =




d11 − n − 1 d12 d14

d31 d32 d34

d41 d42 d44 − n − 1




of the matrix B, we have

det(B1) =(d11 − n − 1)d32(d44 − n − 1) + d12d34d41 + d14d31d42

− d14d32d41 − d12d31(d44 − n − 1)− (d11 − n − 1)d34d42.

Hence when d32 > 0, it follows that

det(B1) > d12d34d41 + d14d31d42 + d12d31d41 + d14d34d42 ≥ 0

since d14 < n + 1 − d11 and d41 < n + 1 − d44.
If d32 = 0, we have d31 > 0, d34 > 0, and hence

det(B1) > d12d34d41 + d14d31d42 + d12d31d41 + d14d34d42 > 0.

Thus, we proved det(B1) > 0 in this case.

Case 2. At least one of d13, d23, d43 is greater than zero.
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Now we consider the 3 × 3 submatrix

B2 =




d11 − n − 1 d12 d13

d21 d22 − n − 1 d23

d41 d42 d43




of the matrix B with

det(B2) =(d11 − n − 1)(d22 − n − 1)d43 + d12d23d41 + d13d21d42

− d13(d22 − n − 1)d41 − d12d21d43 − (d11 − n − 1)d23d42.

Hence when d43 > 0, it follows that

det(B2) > d12d23d41 + d13d21d42 + d13d21d41 + d12d23d42 ≥ 0

since d12 < n + 1 − d11 and d21 < n + 1 − d22. However, if d43 = 0, we have
d41 > 0, d42 > 0, and hence

det(B2) > d12d23d41 + d13d21d42 + d13d21d41 + d12d23d42 > 0

because at least one of d13, d23 is greater than zero.
Therefore, we proved rank(B) = 3. By using elementary row transformations,

we can deduce the matrix B into the form

D =




1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0


 . (3.16)

Then (3.15) and (3.16) yield α1 = α2 = α3 = α4. This is a contradiction. Hence
(3.14) does not hold.

Without loss of generality, we may assume that (n + 1)α4 is not a linear com-
bination of α1, ..., α4 with the weight n + 1 over {0, 1, ..., n}, that is,

(n + 1)α4 6= m1α1 + m2α2 + m3α3 + m4α4 (3.17)

for all m1, m2, m3, m4 ∈ {0, 1, ..., n} such that m1 + m2 + m3 + m4 = n + 1. Noting
that (n+ 1)α4 6= αl(l = 1, 2, ..., s), α4 6= αl (l = 1, 2, 3) and (3.17), then multiplying

(3.13) by e−(n+1)α4z, we see that αk
4bn+1

4 is a linear combination of exponential
functions, thus b4 = 0 by comparing its growth.

Thus, equation (3.12) becomes
(

3

∑
j=1

bj(z)e
αjz

)n
3

∑
j=1

αk
j bj(z)e

αjz =
s

∑
l=1

cle
αl z.

Repeating above arguments, it is same to show one of {b1, b2, b3}, say b3, is zero,
so that the equation (3.12) further becomes

(
2

∑
j=1

bj(z)e
αjz

)n
2

∑
j=1

αk
j bj(z)e

αjz =
s

∑
l=1

cle
αl z.

We can deduce b2 = b1 = 0 similarly. Hence Lemma 3.4 follows.
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4 Proof of Theorem 2.1

Suppose that the equation (2.4) has a meromorphic solution f with σ2( f ) < 1.
We will deduce contradictions by distinguishing two cases.

Case 1. f has at least one pole.
Let z0 be a pole of f with multiplicity q (≥ 1). For the case c = 0, we get a

contradiction by comparing the multiplicities of the pole z0 at both sides of (2.4).
If c 6= 0, it follows from (2.4) that z0 + c is also a pole of f with multiplicity
≥ (n + 1)q + k. Substituting z + c into (2.4), we get

f n(z + c) f (k)(z + c) + p(z + c) f (z + 2c) =
s

∑
l=1

βle
αl(z+c). (4.1)

It follows from (4.1) that z0 + 2c also is a pole of f with a multiplicity

≥ (n + 1)2q + k(n + 1) + k since z0 + c is a pole of f n f (k) with a multiplicity
≥ (n + 1)2q + k(n + 1) + k. By using induction, we know that for each inte-
ger j ≥ 1, the point z0 + jc is a pole of f with a multiplicity ≥ (n + 1)jq +
k
[
(n + 1)j−1 + (n + 1)j−2 + · · ·+ 1

]
. Hence for each integer m ≥ 1, we get an

estimate on the number n(r, f ) of poles of f in the disc |z| ≤ r as follows:

n(rm, f ) ≥ q +
m

∑
j=1

(n + 1)jq + k
[
(n + 1)j−1 + (n + 1)j−2 + · · ·+ 1

]
,

where rm = m|c|+ |z0|+ 1. Thus, we have

σ2( f ) ≥ λ2

(
1

f

)
= lim sup

r→∞

log log n(r, f )

log r

≥ lim sup
m→∞

log log n(rm, f )

log rm

≥ lim sup
m→∞

log log(n + 1)m

log m
= 1

since n ≥ 2 + s ≥ 3. It contradicts with σ2( f ) < 1.
Case 2. f is an entire function.
If f is a polynomial, by comparing the growth at both sides of the equation

(2.4), we find the order of the function at left side of (2.4) is 0, but the order of the
function at right side of (2.4) is 1. It is a contradiction. Hence f is transcendental.
Further, we divide our discussion into two subcases:

Subcase 2.1. s = 1. Now the equation (2.4) becomes

f (z)n f (k)(z) + p(z) fc(z) = β1eα1z. (4.2)

Differentiating both sides of (4.2), we get

n f (z)n−1 f ′(z) f (k)(z) + f (z)n f (k+1)(z) + (p(z) fc(z))
′ = α1β1eα1z.

Combining this equation with (4.2), we get

f n−1F = α1p fc − (p fc)
′ , (4.3)
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where F = n f ′ f (k) − α1 f f (k) + f f (k+1).
If F 6= 0, it follow from (4.3) and Lemma 3.2 that

T (r, F) = m (r, F) = m

(
r,

α1p fc − (p fc)
′

f n−1

)
= S(r, f ), (4.4)

T (r, f F) = m (r, f F) = m

(
r,

α1p fc − (p fc)
′

f n−2

)
= S(r, f ) (4.5)

since n ≥ 2 + s = 3. Combining (4.4) with (4.5), we get

T(r, f ) ≤ T (r, f F) + T

(
r,

1

F

)
= T (r, f F) + T (r, F) + O(1) = S(r, f ).

This is a contradiction.

When F = 0, or equivalently n
f ′

f +
f (k+1)

f (k) = α1, then by integrating,

it follows that f n(z) f (k)(z) = τ1eα1z, where τ1 is a nonzero constant. Combin-
ing this equation with equation (4.2) , we get

fc(z) =
β1 − τ1

p(z)
eα1z, (4.6)

which means that β1 6= τ1 and p(z) is a nonzero constant, say τ2, since f is a
transcendental entire function. Thus we obtain

f (z) =
β1 − τ1

τ2
eα1(z−c) = τeα1z,

where τ =
β1−τ1

τ2
e−α1c is a nonzero constant. It contradicts with f n(z) f (k)(z) =

τ1eα1z since k ≥ 1, n ≥ s + 2 ≥ 3.
Subcase 2.2. s > 1. Differentiating both sides of the equation (2.4), we obtain

G′(z) =
s

∑
l=1

αlβle
αlz, · · · , G(s−1)(z) =

s

∑
l=1

αs−1
l βle

αlz,

where G = f n f (k) + p fc. Combining these equations with (2.4) and using
Cramer’s Rule, we find

β1eα1z =
E1(z)

E
,

where

E1(z) =

∣∣∣∣∣∣∣∣∣∣

G(z) 1 · · · 1
G′(z) α2 · · · αs

G′′(z) α2
2 · · · α2

s

· · · · · · · · · · · ·

G(s−1)(z) αs−1
2 · · · αs−1

s

∣∣∣∣∣∣∣∣∣∣

, (4.7)

E =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αs

α2
1 α2

2 · · · α2
s

· · · · · · · · · · · ·
αs−1

1 αs−1
2 · · · αs−1

s

∣∣∣∣∣∣∣∣∣∣

= ∏
1≤j<i≤s

(αi − αj) 6= 0. (4.8)
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By expanding determinant (4.7) along the first column, we get a relation

β1eα1z =
1

E

s−1

∑
j=0

(−1)s−j+1Ms−j,1G(s−j−1)(z), (4.9)

where Ms−j,1(j = 0, 1, ..., s − 1) is the determinant formed by throwing away the
first column and (s − j)-th row from the determinant (4.7), that is,

Ms,1 =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α2 α3 · · · αs

α2
2 α2

3 · · · α2
s

· · · · · · · · · · · ·
αs−2

2 αs−2
3 · · · αs−2

s

∣∣∣∣∣∣∣∣∣∣

, (4.10)

Ms−j,1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α2 α3 · · · αs

· · · · · · · · · · · ·

α
s−j−2
2 α

s−j−2
3 · · · α

s−j−2
s

α
s−j
2 α

s−j
3 · · · α

s−j
s

· · · · · · · · · · · ·
αs−1

2 αs−1
3 · · · αs−1

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 1, 2, ..., s − 1. (4.11)

From (4.10) and (4.11), we see that Ms,1 is the principal Vandermondian with
variables α2, α3, ..., αs. Let µj be the elementary symmetric function of α2, α3, ..., αs

defined by

(x − α2) · · · (x − αs) = xs−1 +
s−1

∑
j=1

(−1)jµjx
s−1−j. (4.12)

By (4.10), (4.11) and Lemma 3.3, we get

µj ≡
Ms−j,1

Ms,1
, j = 1, 2, ..., s − 1. (4.13)

Differentiating both sides of (4.9), we get

α1β1eα1z =
1

E

s−1

∑
j=0

(−1)s−j+1Ms−j,1G(s−j)(z). (4.14)

Eliminating eα1z from (4.9) and (4.14), we have

Ms,1G(s) +
s−1

∑
j=1

(−1)j
(

Ms−j,1 + α1Ms−j+1,1

)
G(s−j) = (−1)s+1α1M1,1G. (4.15)

Let L(w) be a linear differential operator defined by

L(w) = w(s) +
s−1

∑
j=1

(−1)j
(

Ms−j,1 + α1Ms−j+1,1

)

Ms,1
w(s−j) +

(−1)sα1M1,1

Ms,1
w. (4.16)
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It follows from (4.15) and (4.16) that

L( f n f (k)) = −L(p fc). (4.17)

Let νj be the elementary symmetric function of α1, α2, ..., αs defined by

(x − α1) · · · (x − αs) = xs +
s

∑
j=1

(−1)jνjx
s−j. (4.18)

It follow from (4.12), (4.13) and (4.18) that

−
Ms−1,1 + α1Ms,1

Ms,1
= −(µ1 + α1) = −(α1 + α2 + · · ·+ αs) = −ν1,

(−1)j(Ms−j,1 + α1Ms−j+1,1)

Ms,1
= (−1)j

(
µj + α1µj−1

)
= (−1)jνj

for j = 2, 3, ..., s − 1, and

(−1)sα1M1,1

Ms,1
= (−1)sα1µs−1 = (−1)s(α1α2 · · · αs) = (−1)sνs.

Hence L(w) becomes

L(w) = w(s) − ν1w(s−1) + · · ·+ (−1)jνjw
(s−j) + · · ·+ (−1)sνsw. (4.19)

We deduce inductively

(
f n f (k)

)(m)
=

m

∑
i=0

(m
i ) ( f n)(i)

(
f (k)
)(m−i)

=
m

∑
i=1

(m
i )
(

f (k)
)(m−i)

·

[
n f n−1 f (i) +

i−1

∑
j=2

∑
λ

γjλ f n−j
(

f ′
)λj1

(
f ′′
)λj2 · · ·

(
f (i−1)

)λj,i−1

+ n(n − 1) · · · (n − (i − 1)) f n−i
(

f ′
)i
]
+ f n f (k+m)

(4.20)

for m = 1, 2, ..., s, where γjλ are positive integers, λj1, λj2, ..., λj,i−1 are non-negative
integers and sum ∑λ is carried out such that λj1 + λj2 + · · · + λj,i−1 = j and
λj1 + 2λj2 + · · ·+ (i − 1)λj,i−1 = i. By (4.19) and (4.20), we get

L( f n f (k)) = f n−sψ, (4.21)

where ψ is a differential polynomial in f of degree s+ 1 with constant coefficients.
From (4.17), (4.19) and (4.21), we obtain

f n−sψ = −L(p fc), (4.22)

where L(p fc) is a differential-difference polynomial in f of degree 1 with polyno-
mial coefficients.
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If ψ 6= 0, then by (4.22) and Lemma 3.2, we get

T(r, ψ) = m(r, ψ) = S(r, f ),

T(r, f ψ) = m(r, f ψ) = S(r, f ).
(4.23)

The above two equalities give

T(r, f ) ≤ T(r, f ψ) + T

(
r,

1

ψ

)
= S(r, f ).

This is a contradiction.
If ψ = 0, we have L( f n f (k)) = 0 and L(p fc) = 0. Using (4.19), we get

L(p fc) = (p fc)
(s) +

s

∑
l=1

(−1)lνl(p fc)
(s−l) = 0.

The characteristic equation of this equation is

λs − ν1λs−1 + · · ·+ (−1)jνjλ
s−j + · · ·+ (−1)sνs = 0. (4.24)

Since (4.24) has s distinct roots α1, α2, ..., αs, we get that p fc has the form

p(z) f (z + c) = b̃1eα1z + b̃2eα2z + · · ·+ b̃se
αsz,

where b̃j (j = 1, 2, ..., s) are constants. So

f (z) = b̂1(z)e
α1z + b̂2(z)e

α2z + · · ·+ b̂s(z)e
αs z, (4.25)

where b̂j(z) =
b̃je

−αjc

p(z−c)
(j = 1, 2, ..., s) are rational functions.

Similarly, we deduce from L( f n f (k)) = 0 that

f (z)n f (k)(z) = c̃1eα1z + c̃2eα2z + · · ·+ c̃se
αsz, (4.26)

where c̃j (j = 1, 2, ..., s) are constants. From (4.25) and (4.26), we obtain

s

∑
l=1

c̃le
αlz =

s

∑
l=1

αk
l b̂n+1

l (z)e(n+1)αl z + ∑
|m|=n+1

cm(z)e〈m,α〉z , (4.27)

where m = (m1, m2, · · · , ms) ∈ {0, 1, ..., n}s, cm are rational functions, and

〈m, α〉 =
s

∑
j=1

mjαj.

Since (n + 1)αs 6= 〈m, α〉, (n + 1)αs 6= αl(l = 1, 2, ...,

s) and αs 6= αl (l = 1, 2, ..., s − 1), then multiplying (4.27) by e−(n+1)αsz, we see

that αk
s b̂n+1

s is a linear combination of exponential functions, and hence b̂s = 0 by
comparing its growth. Repeating above arguments, it is same to show that

b̂5 = b̂6 = · · · = b̂s−1 = 0.



146 P.-C. Hu – Q.-Y. Wang

Then f becomes

f (z) = b̂1(z)e
α1z + b̂2(z)e

α2z + b̂3(z)e
α3z + b̂4(z)e

α4z. (4.28)

From (4.26), (4.28) and Lemma 3.4, we obtain that b̂1 = b̂2 = b̂3 = b̂4 = 0, which
implies f = 0. This is a contradiction. Therefore, the equation (2.4) does not have
any entire solution of hyper-order less than one when s > 1.

According to the arguments above, we see that any meromorphic solution f
of the equation (2.4) must satisfy σ2( f ) ≥ 1. Thus we complete the proof.
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