Growth on Meromorphic Solutions of Non-linear
Delay Differential Equations*
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Abstract

By using Nevanlinna theory and linear algebra, we show that the number
one is a lower bound of the hyper-order of any meromorphic solution of a
non-linear delay differential equation under certain conditions.

1 Introduction

Nevanlinna theory is the value distribution theory established by R. Nevanlinna,
it is a very useful tool for studying both the growth of meromorphic functions in
the complex plane C and meromorphic solutions of differential equations. The
well-known mathematician K. Yoshida [18] applied the Nevanlinna theory to ex-
tend Malmquist’s celebrated work in showing that a first order algebraic
differential equation of the form ' = R(z,y), where R is a rational function in
y with polynomial coefficients in z, admits a meromorphic (i.e., global) solution,
then it must reduce to a Riccati equation. N.Steinmitz [15], Bank and Kaufman
independently extended earlier works of Hermite and Painlevé on first order
algebraic differential equations (/)" = P(y) when the corresponding algebraic
curves have genus 0 or 1 by using Nevanlinna theory.

The classification of ¥ = R(z,y,y’) that would yield Painlevé’s (I-V) equa-
tions has yet to be completed. Recently, A. Eremenko and A. Gabrielov [6],
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Conte, Ng and Wong [4], etc have successfully derived meromorphic solutions
out of a set of nonlinear PDE with wide range of physical applications by com-
bining Nevanlinna theory and local series analysis. On the other hand, also
recently, Halburd and Korhonen [8] showed, again using Nevanlinna theory, that
if the difference equation y(z +1) + y(z — 1) = R(z,y) (e.g. R rational in both
arguments) admits a finite order meromorphic solution, then the equations must
reduce to one of the known discrete-Painlevé equations. In this paper, we study
the growth of any meromorphic solution of a non-linear delay differential (or
differential difference) equation under certain conditions.

2 Main Results

Take positive integers t and k. For t + 1 complex numbers co(= 0),cy, ..., ¢z, it is
an interesting question to study properties of entire (or meromorphic) solutions
of differential (or difference, or differential-difference) equations in the complex
plane C,

t

P(f) =Y (f(“>)I :Zall—[(fc(,k))I' —0, @.1)
IeZ I 1=0

where k = (0,1, ... k); I = (Iy, ..., It), I; = (ijo, i1, ---, ijx) are multi-indices of non-

negative integers Z, ; 7 is a finite set of ZS:H)(kH) ;£ = (feor s for) in which fe, is

defined by f,(z) = f(z +¢;); fc(lk) = (fcl,fc’l, ...,fc(lk)); aj are NON-zero Meromor-

phic functions in C; and where

<fc(lk))lz _ Cifo (fC/l>i11 o <fc(lk))i1k .

Obviously, this kind of problems are closely related to those of delay differen-
tial equations. For example, some authors (cf. [7]) are concerned with an investi-
gation of the asymptotic behavior, as t — oo of positive nonconstant solutions of
the autonomous delay differential equation

da;(tt) = x(t) {a — ébjx(t — rj)} ;>0 (2.2)

]

and several of its variants where 4, b]-, Tj (j =1, .., n) are positive constants, or the
stability and fundamental theory of delay (or functional) differential equations
(see, e.g., [5], [10]).

Many complex analysts have investigated some special cases of the question
(2.1) by using value distribution theory of Nevanlinna (see e.g. [2], [3]). In partic-
ular, fixed a polynomial p(# 0) and considered

F1(2) 4 pR)flz+0) = Y pre”, 23)
=1

which is also called a difference equation of f by some complex analysts, under
the following assumptions:
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(A) Fix ¢ € C. Take positive integers n, s with n > s + 2. Let B4, B2, ..., Bs be non-
zero constants and let ay, ay, ..., a5 be distinct non-zero constants satisfying
i—; # nforalli,j € {1,2,..,s}. Whens > 5, one further assumes that

na; (5 < 1 <'s) are not linear combinations of &y, ..., s with the weight n
over {0,1,...,.n — 1}, that s,

nay # (M, o) Zm]a], =5,---,s,

where m = (mq,myp,--- ,ms) € {0,1,..,n —1}° and |m| = n.

Zhang and Huang proved that any meromorphic solution f on C of the func-
tional equation (2.3]) must satisfy o»(f) > 1, where 0»(f) is the hyper-order of f
defined by the Nevanlinna characteristic function T(r, f)

, loglog T(r,
a2 (f) :11m_>sup & lfgr( f)

In this paper, we will extend the result of Zhang and Huang mentioned above
to the following delay differential equation on f

F12) 9 (2) + p(2)f(z +c) Zﬁze“lz (2.4)

which also is called a differential-difference equation of f by some complex ana-
lysts, under the following assumptions:

(B) Fixc € C. Take positive integers n, s, k with n > s 4 2. Let B4, B, ..., Bs be non-
zero constants and let aq, ay, ..., a5 be distinct non-zero constants satisfying
% #n+1foralli,j € {1,2,..,s}. Whens > 5, one further assumes that

]

(n+1)a; (5 <1 < s) are not linear combinations of a7, ..., &5 with the weight
n+1over{0,1,..,n}, thatis,

(n+1)ﬂél 7é m DC 2 DC]I - 1 ISI

where m = (my,my,- -+ ,ms) € {0,1,..,n} and lm| =n + 1.
In this paper, we prove the following theorem:

Theorem 2.1. If p(# 0) is a polynomial, then any meromorphic solution f on C of the
delay differential equation (2.4]) under the assumptions (B) must satisfy oo(f) > 1.

If n < 1+ s, the following example shows Theorem 2.1lis not true.

Example 2.2. The delay differential equation
f4(Z)f/(Z) . 2f (Z + g) — ieSiz + 31'631'2 . 31-6—31'2 _ ie—Siz

has an entire solution _ _
f(Z) — elZ+e—lZ
with o5 (f) = 0. For this case, we have 4 = n < s+ 1 =>5.
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The following example shows that the condition i—; # n+ 1 for all

i,j €{1,2,..,5} is necessary.
Example 2.3. For k > 1, the delay differential equation
f4(z)f(k) (z) — f(z+ 67i) = 37ke37 _ 3

has an entire function with o>(f) =0,

f(z) = e3%

3 Preliminaries

We assume that the reader is familiar with the standard notations and funda-
mental results in Nevanlinna theory (see, e.g., [11], [17]). The hyper-exponent of
convergence of poles of f is defined by

A, 1y _ lim sup loglog N(r, f) _ lim sup loglogn(r, f)
r—s00 logr NS logr

We denote by S(r, f) any real function of growth o(T(r, f)) as r — oo outside of
a possible exceptional set of finite logarithmic measure. A meromorphic function
« on C is said to be a small function of f if T(r,a) = S(r, f). The function P(f)
defined by left side of (2.1) is called a differential-difference polynomial of f if the
coefficients ay are small functions of f.

The first Lemma is referred to [13, Lemma?2.2].

Lemma 3.1. Let f be a non-constant meromorphic function, let c,h be two complex
numbers such that ¢ # h. If o»(f) < 1, then

w(r 1) = ste.)

for all v outside a set of finite logarithmic measure, where fy,(z) = f(z +h), fc(z) =

f(z+c).

Take complex numbers do(= 0),dq, ..., d;. Let R(f) be a differential-difference
polynomial of f defined by

R(F) = L yTT(A9)" G

JeJ 1=0

where k = (0,1,...k); J = (Jo, -, J¢), i = (o, j11, - j1x) are multi-indices of non-

negative integers Z ; 7 is a finite set of ZS:H)(kH), and where by are non-zero

small functions of f. For complex numbers ey(= 0), ey, ..., ez, we use Q(f) to de-
note a difference polynomial of f as follows:

QUf) = ¥ Cfal- - fN, (32)

KeK
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where K = (Kj, ..., K;) are multi-indices of non-negative integers Z . ; K is a finite
set of Zfl, and where Ck are non-zero small functions of f. Next we consider

the following equation
R(£)Q(f) = P(f), (33)

P(f) is a differential-difference polynomial defined by the left side of (2.1).
The second lemma is a variant of the result due to Laine and Yang [12].

Lemma 3.2. Let f be a transcendental meromorphic solution of hyper-order o> (f) < 1
of the equation (3.3]) with degP(f) < degQ(f). Assume that there is only unique
monomial of degree deg Q(f) in Q(f). Then,

m(r,R(f)) = S(r, f)

holds possibly outside an exceptional set of finite logarithmic measure.

Proof. Set n = deg Q(f) and put
[0 = of + - -+ [Le], L] = i + -+ + i

Note that 4 4
P = Il < = K|.
eg P(f) = max|I| < deg Q(f) = max K| (3.4)

Rewrite Q(f) into the following form

Q(f) = i)@f”, (35)
L

- B ()"

In particular, by the assumption, we have

- (5" ()

with |K| = n. By Lemma[3.1] we obtain

where

m (r, @7) =S(r,f), n=0,..,n (3.6)

for e > 0 small enough, as well as

m (réi) — S(r,f), (37)

for all r outside a set of finite logarithmic measure.
Making use of the reasoning in [[16], we first define

”) . (3.8)

6”-]7

U

¢(z) := max (1,2

1<n<n
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Although ¢ is not meromorphic, however we may estimate m(r,¢),
1 ~ 1
m(r,c) < ) m <r, C,7> +m (r,é—) +0(1) = S(r, f).
n=0

n
Take z € C and write z = re'®. Set

E, = {9 e [0,27) : ) f(reig)‘ < E(reif’)}, E, := [0,270)\E;. (3.9)
In the set E1, we have the following estimate
(k) |k
A< Y |yl |f|IJ\H fdl . fd_f
Jeg 1=0 f f
]lk
< ¥ T 3.10)
]ej f f
. (k) |/
t Jio
SWZWH@ fd_l )
JeJg 1=0 f f
where
= degR
¢ =degR(f) = max 7]
In the set Ey, noting that
_ 1
7
f| >¢c>2 ,
n
and hence _
Coy| _ L1V
for n =1, ..., n, which means
~ ~ n
noo_ _ n | Cpy Cy
=G| =[Cur (1— = )z :
n=0 ! ! 17[;1 |Cnf17| 2"
we also obtain an estimate
(k) |1k
P(f) ‘ e
R = a
() \Q(f) X A" :
(k) |tk
}: el T | G
1e7 1=0 f f
JARLLS
fcz |

ZlaIIH

| (A =0

7

f
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since |I| < deg(P(f)) <mand |f| > 1.
Combing (3.10) and (3.11), we obtain a complete estimate

(k) |Jx
< ¥ T
JeJ 1=0 f
Z ilO . fc(lk) Ik
17 1=0 f

which yields immediately

m(r,R(f)) <cm(r,c) +m (r,%) + Y m(r,a)) + ) m(r, by)

IcT JeJg

EEb () e ()

R — -
Note that

ON o (o E 1
mlr,~>— | <m|r,~*~ | +m ,o6eC,v=1,2,--,k
( f) ( f”) ( f)

Applying (3.7), 3.9), Lemma 2.1 and logarithmic derivative lemma to the inequal-
ity on m(r, R(f)), it follows that

m(r,R(f)) = S(r, f)

since ay, by are small functions of f. Hence Lemma [3.2]is proved. m

To state next lemma, we introduce some notations. The determinant

] ] 1
T
diil—l dg—l dn—l

n

is called the principal Vandermondian, which is determined by

Vo = H (dz - d])

1<j<i<n

Foreveryk =1,2,...,n — 1, the determinant

1 1 1
d1 dz o d,
Vnk — dn k—1 dn k-1 . dn—k—l
n
dn k+1 dn k+1 . dz—k—l—l
Booa
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is called the secondary Vandermondian. The coefficients G defined by
(x—dp)--(x—dy) =" +2 DEGex"~

are called elementary (or fundamental) symmetric functions (or polynomials) of
dy,...,dn. The following lemma establishes a relationship between Vo and V},
which is referred to [9].

Lemma 3.3. The k-th elementary symmetric function Gy of the n variables dq,d>, ..., dy
is equal to the quotient of the secondary Vandermondian V, by the principal Vander-
mondian V.

In the final lemma, the elementary row transformations consist of the follow-
ing three cases: (i) switch two rows; (ii) multiply a row by a non-zero number;
(iii) add to a row by a multiple of another row.

Lemma 3.4. Take positive integers n,k and s withn > 2. Let ¢;(1 < I < s) be constants
and let b]'(l <j< 4) be rational functions. If there exist distinct nonzero constants
a(1 <1 <) satisfying (n+ 1)a; # a)(1 < j < 4,1 <1 <s)such that

4 oy s
(Z bj(z)e”‘fz> Y akbi(z)e"® = Y e (3.12)
j=1 j=1 I=1

holds, then we have b; = 0(1 < j < 4).
Proof. Tt follows from (3.12) that

S ~ o~
2 ik Z [Xkbn—&-l n+1) iz 4 2 Cm )e(m,tx>z’ (3.13)
|m|=n+1

where m = (mq,my, m3, my) € {0,1,...,n}*, csz are rational functions, and
4
m,x) = ) ma;.
j=1

Now we claim that there is some i € {1,2,3,4} such that (n + 1)a; is not a linear
combination of a7, ..., a4 with the weight n + 1 over {0, 1, ..., n}. Otherwise, for
eachi € {1,2,3,4} there exist non-negative integers dij € {0,1,..,n}(j =1,2,3,4)
with dj; +djp +djz +dig = n+ 1, such that

(n + 1)061 = di1001 + dip0n + dizag + digy,
(n+1)ag = doyovy + dooas + dpzas + dogay,
(n+1)az = d3jaq + dpay + dszas + dagay,
(Tl + 1)064 = dg1001 + dgpor + dygas + dygny.

(3.14)

Next we will deduce a contradiction from the system (3.14).
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If there is some i € {1,2,3,4} such that only one of three integers d;; (j # i)
is greater than zero, say dy; > 0, so that dy; = 0 (j # 2), then from the second
equation of system (3.14), we see (n + 1 — dpp)ay = dyjaq. Since dyy +dpp = n+1
and dy; # 0, we obtain a7 = a,. This is a contradiction.

Hence for each i € {1,2,3,4}, at least two of three integers djj (j # i) are
greater than zero, so that when j # i, we have d;; < n+ 1 —d;;. We rewrite the
system as follows:

(di1 —n —1)ay +dpas +dizaz +dgay =0,
dr» oy + (dzz —n— 1)062 + dozas + dogeey = 0,
dzjaq + dzpon + (d33 —n— 1)063 + dsgng = 0,
dpay +dgppao + dygas + (dgg —n—1)ag =0,

(3.15)

and denote the matrix of coefficients of system (3.13) by

dyp—n—1 d12 di3 dig
B— dx dp—n—1 3 o
dz1 dz dzz —n—1 dzy

dg dgp dg3 dgyg —n—1

Then we claim that the rank of B is 3.

Adding columns 2, 3 and 4 to column 1, and noting that d;y + djp +dj3 + djs =
n+1(i = 1,2,3,4), we find det(B) = 0. Next we discuss minor determinants of
order 3 in B by distinguishing two cases.

Case 1. d13 = d23 = d43 =0.

This case implies djp > 0,d14 > 0,dp; > 0,dps > 0,d41 > 0,dgp > 0. For the
3 x 3 submatrix

By = d3 dzp d34

dip—n—1 dp di4 )
dy dyp dgy—n—1

of the matrix B, we have

det(Bl) :(dll —n — 1){7l32 (Cl44 —n — 1) + d12d34d41 + d14d31d42
— dyadzpds) — dipdsy (dag —n — 1) — (d1g —n — 1)daadap.

Hence when d3; > 0, it follows that
det(B1) > dipdsaday + diadsidap + dipdziday + diadzadsy > 0

sincediy <n+1—dppanddy <n+1—dy.
If d3p = 0, we have d3; > 0, d34 > 0, and hence

det(B1) > dipdsaday + d1adsiday + d1pdz1dag + diadzadsy > 0.
Thus, we proved det(B;) > 0 in this case.

Case 2. At least one of dy3,d»3, dy3 is greater than zero.
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Now we consider the 3 x 3 submatrix

di1—n—1 dio d13
By, = dy dpy—n—1 dxy
day dgp da3

of the matrix B with

det(By) =(d11 —n —1)(dap — n — 1)daz + d1adozdar + dizdaiday
—di3(dyp —n — 1)dy — dipdpidaz — (d11 —n — 1)dpsdap.

Hence when dy3 > 0, it follows that
det(By) > dipdozday + di3doday + di3dadar + dipdazday > 0

since dip < n+1—dy; and dyy < n+1—dy. However, if dyg = 0, we have
dy1 > 0,dg > 0, and hence

det(By) > dipdoszday + di3doiday + di3dodar + dipdazday > 0

because at least one of dy3, dp3 is greater than zero.
Therefore, we proved rank(B) = 3. By using elementary row transformations,
we can deduce the matrix B into the form

100 —1
010 -1

D=1|401 1 (3.16)
000 O

Then (3.15)) and ([B.16]) yield a; = ay = a3 = a4. This is a contradiction. Hence
(3.14)) does not hold.

Without loss of generality, we may assume that (7 + 1)ay is not a linear com-
bination of a7, ..., a4 with the weight n + 1 over {0, 1, ..., n}, that s,

(n+ 1)y # myag + mong + msns + myny (3.17)

for all mq, my, ms, my € {0,1, ..., n} such that my + my + m3 + my = n + 1. Noting
that(n+1)ag # ay(1 =1,2,...,5), 04 # a; (I = 1,2,3) and (B.17), then multiplying
BI3) by e~ ("T1%z we see that kbt is a linear combination of exponential
functions, thus by = 0 by comparing its growth.

Thus, equation (3.12]) becomes

3 "3 s
<Z b]-(z)e“fz> ) oc;‘b]-(z)e‘“fZ =) e
i=1 =1 =1

Repeating above arguments, it is same to show one of {by, by, b3}, say b3, is zero,
so that the equation (3.12)) further becomes

2 "2 s
(Z b]-(z)e”‘fz> ) oc;‘b]-(z)e”‘fz =) e
i=1 =1 =1

We can deduce by = b; = 0 similarly. Hence Lemma 3.4/ follows. ]
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4 Proof of Theorem

Suppose that the equation (2.4)) has a meromorphic solution f with op(f) < 1.
We will deduce contradictions by distinguishing two cases.

Case 1. f has at least one pole.

Let zg be a pole of f with multiplicity g (> 1). For the case ¢ = 0, we get a
contradiction by comparing the multiplicities of the pole zj at both sides of (2.4]).
If ¢ # 0, it follows from (2.4) that zp + ¢ is also a pole of f with multiplicity
> (n+1)g + k. Substituting z + c into (2.4]), we get

frz+0)fP(z+c) +plz +c)f (2 +20) Zﬁze“’ (=), (4.1)

It follows from (I]) that zyp + 2c¢ also is a pole of f with a multiplicity
> (n+41)%q 4+ k(n 4+ 1) + k since zg + ¢ is a pole of f"f(*) with a multiplicity
> (n+1)%qg+k(n +1) + k. By using induction, we know that for each inte-
ger j > 1, the point zo + jc is a pole of f with a multiplicity > (n + 1)/g +
k[(n+1)7"'+ (n+1))"2+- .. +1]. Hence for each integer m > 1, we get an
estimate on the number n(7, f ) of poles of f in the disc |z| < r as follows:

n(rm, f) 2 q+ i(ﬂ +1)g+k [(n 1) (1Y) R+ 1} )
j=1

where 1, = m|c| + |z9| + 1. Thus, we have

1 ) loel )
o2(f) 2 22 (1) = timsup 18108100 1)
r—r0

> lim sup loglog n(rm, f)
m—co 10g 'm
m
> lim sup loglog(n +1)
m— 00 logm

=1

since n > 2+ s > 3. It contradicts with o (f) < 1.

Case 2. f is an entire function.

If f is a polynomial, by comparing the growth at both sides of the equation
(2.4]), we find the order of the function at left side of (2.4]) is 0, but the order of the
function at right side of (2.4) is 1. It is a contradiction. Hence f is transcendental.
Further, we divide our discussion into two subcases:

Subcase 2.1. s = 1. Now the equation (2.4)) becomes

f2)" fO(2) + p(2) fe(2) = pre*. (4.2)
Differentiating both sides of (£.2), we get

nf ()" f(2)f 9 2) + ()" D @)+ (p2) fe(2) = mapre™s?

Combining this equation with (4.2)), we get

fn_lF =wmpfe— (PfC)// (4.3)
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where F = nf’ f) — qy ffR) 4 kD),
If F # 0, it follow from (4.3]) and Lemma [3.2] that

T (r,F) =m(r,F) = m (n pf }H__S’”f ) ) =S(r, f), (4.4)

T (r, fF) =m(r,fF) =m (r, 061Pf}n—_gpfc)/> = S(r, f) (4.5)

since n > 2+ s = 3. Combining (£.4)) with (4.5]), we get

T(r,f) <T(r,fEF)+T <r,%) =T(r,fF)+T(r,F)+0O(1) =S(r, f).

This is a contradiction.

When F = 0, or equivalently nfT/ + % = way, then by integrating,

it follows that f"(z)f®)(z) = 1%, where 71 is a nonzero constant. Combin-
ing this equation with equation (4.2)) , we get

ful(z) = L; O @6

which means that f; # 71 and p(z) is a nonzero constant, say T, since f is a
transcendental entire function. Thus we obtain

f(Z) _ 1 —T et1(z—c) — TeMZ,
(%)

where T = ﬁlT—_ZTle_”‘lc is a nonzero constant. It contradicts with f(z)f*)(z) =
T1eM*sincek > 1,n > s+2 > 3.
Subcase 2.2. s > 1. Differentiating both sides of the equation (2.4]), we obtain

5 s
G/(Z) = Z “Z,Blealzz -, G(S_l) (Z) — Z ai—lﬁlelxlzl
=1 I=1

where G = f"f®) 4 pf.. Combining these equations with ([24) and using
Cramer’s Rule, we find

Ei(z)
N1Z —
pre T
where
G(z) T |
G'(z) Ay e g
Ei(z)=| G"(z) a5 - af |, (4.7)
G(s—l)(z) ,X;—l coeoasl
1 1 1
o1 oy NN g
E=| af a5 - af |= [ (xi—aj) #0. (4.8)
1§j<i§s
"‘i 1 0(3_1 az—l
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By expanding determinant (4.7]) along the first column, we get a relation

1 s—1 . e
ﬁlelxlz _ E ;)(_1)5 ]+1MS_]',1G(S j 1)(2), (4.9)
j=
where M;_j1(j = 0,1,...,s — 1) is the determinant formed by throwing away the
first column and (s — j)-th row from the determinant (£.7)), that is,

1 1 Ce 1
‘XZ [X3 . e [XS
Mgi=| a5 a5 - a2 |, (4.10)
a2 ag 2 ws?
1 1 1
1% o3 Xs
s—j—2 s—j—2 s—j—2 .
My jp=|ay " a7 " oo ad ], j=1,2,.,5-1 (4.11)
[XS_] [XS_] o [XS_]
2 3 s
s—1 s—1 s—1
‘Xz [X?’ PR [XS

From ({.I0) and (AI1]), we see that M is the principal Vandermondian with
variables wy, a3, ..., ag. Let Wi be the elementary symmetric function of ay, a3, ..., &5
defined by

s—1 ) )
(x—ap) - (x—as) =21+ Y (=) (4.12)
j=1
By (4.10), (.11)) and Lemma[3.3] we get
Ms—j 1 .
= —,17=12,...,s—1. 4.13
=, (4.13)
Differentiating both sides of (4.9)), we get
1 s—1 ) )
mprettt = = Y (—1) M1 GBI (2). (4.14)
=0

Eliminating e** from (4.9) and (4.14]), we have
s—1 ) .
Ms1G® + 3 (=1 (Ms_j1 + aaMy_j411) GO = (1) s M11 G, (4.15)
j=1

Let L(w) be a linear differential operator defined by

(=1 (Ms_j1 + e M ji17) h o (—1)faqM
Liw) = w(s) —+ I JTh w(s_]) + ¢w 4.16
() L e v (4.16)
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It follows from (4.15]) and (4.16]) that
L(f"f¥) = —L(pfe). (4.17)
Let v; be the elementary symmetric function of a1, ay, ..., a5 defined by

(x—a1)---(x —as) =x°+ i(—l)jvjxs_j. (4.18)
j=1

It follow from (4.12), (4.13]) and (4.18) that

- Mg+ a1 Mspa

M =—(m+ar)=—(a1+ar+---+as) = -,
s,1

(1) (Ms—j1 + a1 Ms_ji11)
Ms,l
forj=2,3,..,s—1,and

= (=1 (pj +a1pj1) = (1),

(—1)°a; My

v, = D = (C1 (g as) = (<1

Hence L(w) becomes
L(w) = w® — w1V ... 4 (—1)jv]~w(s_7) + -+ (=1 vsw. (4.19)

We deduce inductively
(7)™ = L engm @ (79) " = i(”:) (o)™
. [nf”_lf 2; i (YR (f(i—1)>Aj’i_1 (4.20)

+nn—1)--(n—(i— 1))fn—i (f/)l} +fnf(k+m)

form=1,2,...,s, where 7j) are positive integers, Aj1, Aj, ..., A ;1 are non-negative
integers and sum ), is carried out such that Aj; +Ap+---+A;; 1 = jand
At +2Ap+ -+ (i = 1)A;; -1 = i. By (&.19) and (4.20), we get

L(f"f®) = frsy, (4.21)
where 1 is a differential polynomial in f of degree s + 1 with constant coefficients.
From (£17), (419) and (£21]), we obtain

"7 = —Lpfe), (4.22)

where L(pf.) is a differential-difference polynomial in f of degree 1 with polyno-
mial coefficients.
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If ¢ # 0, then by (£.22]) and Lemma[B3.2] we get

T(r,) = m(r,p) = S(r, f),
T(r, f) = m(r, fg) = S(r, f)-

The above two equalities give

(4.23)

T(r,f) < T(r, f9) + T ( %) = S(r, f).

This is a contradiction.

If = 0, we have L(f"f®)) = 0and L(pf.) = 0. Using [&I9), we get

S

L(pfc) = Pfc Z )y Pfc =0.

The characteristic equation of this equation is
A — AT (S AT 4 (<1)Ps = . (4.24)
Since (4.24]) has s distinct roots a1, ay, ..., &5, we get that pf. has the form
p(2)f(z 4 ) = b1e™Z 4 bpe™* + - - - + bse™?,
where E]- (j =1,2,..,s) are constants. So
f(z) = b1(2)e" 4 by(2)e + - - - + bg(2)e™7, (4.25)
3 e

where Ej(z) =-1—(j=1,2,..,s) are rational functions.
plz—c)
Similarly, we deduce from L(f"fX)) = 0 that

F@) 0 (2) = GeM® + 5et2® + - - + G, (4.26)
where ¢; (j = 1,2,..,,s) are constants. From (4.25)) and (4.26]), we obtain
S
Z etz Z o} bn+1 n—&-l)lez + 2 z (4.27)
=1 |m|=n+1

where m = (mq,mp, -+ ,ms) € {0,1,...,n}°, cm are rational functions, and

S
w) =Y mia;.
=1

Since (n + l)as # (mua), (n+ las # ol = 1,2,.,
s)and a5 # a; (I = 1,2,...,5 — 1), then multiplying [#27) by e~ ("+1%7, we see
that a¥p"+1 is a linear combination of exponential functions, and hence bs =0 by
comparing its growth. Repeating above arguments, it is same to show that

bs=Dbg=--=bs 1 =0.
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Then f becomes
£(2) = b1(2)eM% + by(2)e"2% + by (2)e% + by (z)e™?. (4.28)

From (#26)), (E28) and Lemma B4, we obtain that by = b, = b; = by = 0, which
implies f = 0. This is a contradiction. Therefore, the equation (2.4]) does not have
any entire solution of hyper-order less than one when s > 1.

According to the arguments above, we see that any meromorphic solution f
of the equation (2.4)) must satisfy 02(f) > 1. Thus we complete the proof.
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