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Abstract

In this article we study an almost f -cosymplectic manifold admitting a
Ricci soliton. We first prove that there do not exist Ricci solitons on an almost
cosymplectic (κ, µ)-manifold. Further, we consider an almost f -cosymplectic
manifold admitting a Ricci soliton whose potential vector field is the Reeb
vector field and show that a three dimensional almost f -cosymplectic is a
cosymplectic manifold. Finally we classify a three dimensional η-Einstein
almost f -cosymplectic manifold admitting a Ricci soliton.

1 Introduction

A Ricci soliton is a Riemannian metric defined on manifold M such that

1

2
LV g + Ric − λg = 0, (1.1)

where V and λ are the potential vector field and some constant on M, respectively.
Moreover, the Ricci soliton is called shrinking, steady and expanding according as
λ is positive, zero and negative respectively. The Ricci solitons are of interest to
physicists as well and are known as quasi Einstein metrics in the physics litera-

ture [6]. Compact Ricci solitons are the fixed point of the Ricci flow: ∂
∂t g = −2Ric,
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projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings, and often arise as blow-up limits for the Ricci flows on compact
manifolds. The study on the Ricci solitons has a long history and a lot of achieve-
ments were acquired, see [5, 13, 15]etc. On the other hand, the normal almost
contact manifolds admitting Ricci solitons were also been studied by many re-
searchers (see [3, 7, 8, 9]).

Recently, we note that the three dimensional almost Kenmotsu manifolds ad-
mitting Ricci solitons were considered ([18, 19]) and Cho ([2]) gave the classifica-
tion of an almost cosymplectic manifold admitting a Ricci soliton whose potential
vector field is the Reeb vector field. Here the almost cosymplectic manifold, defined
by Goldberg and Yano [10], was an almost contact manifold whose 1-form η and
fundamental 2-form ω are closed, and the almost Kenmotsu manifold is an almost
contact manifold satisfying dη = 0 and dω = 2η ∧ ω. Based on this Kim and
Pak [11] introduced the concept of almost α-cosymplectic manifold, i.e., an almost
contact manifold satisfying dη = 0 and dω = 2αη ∧ ω for any real number α.
In particular, if α is non-zero it is said to be an almost α-Kenmotsu manifold. Later
Aktan et al.[1] defined an almost f -cosymplectic manifold M by generalizing the real
number α to a smooth function f on M, i.e., an almost contact manifold satisfies
dω = 2 f η ∧ ω and dη = 0 for a smooth function f satisfying d f ∧ η = 0. Clearly,
an almost f -cosymplectic manifold is an almost cosymplectic manifold under the
condition that f = 0 and an almost α-Kenmotsu manifold if f is constant( 6= 0).
In particular, if f = 1 then M is an almost Kenmotsu manifold.

On the other hand, we observe that a remarkable class of contact metric man-
ifold is (κ, µ)-space whose curvature tensor satisfies

R(X, Y)ξ = κ(η(Y)X − η(X)Y) + µ(η(Y)hX − η(X)hY) (1.2)

for any vector fields X, Y, where κ and µ are constants and h := 1
2Lξφ is a self-

dual operator. In fact Sasakian manifolds are special (κ, µ)-spaces with κ = 1
and h = 0. An almost cosymplectic (κ, µ)-manifold is an almost cosymplectic man-
ifold with curvature tensor satisfying (1.2). Endo proved that if κ 6= 0 any al-
most cosymplectic (κ, µ)-manifolds are not cosymplectic ([4]). Furthermore, since
κφ2 = h2, κ ≤ 0 and the equality holds if and only if the almost cosymplectic
(κ, µ)-manifolds are cosymplectic. Notice that Wang proved the non-existence of
gradient Ricci solitons in almost cosymplectic (κ, µ)-manifolds(see [17]).

In this paper we first obtain an non-existence of a Ricci soliton in almost
cosymplectic (κ, µ)-manifolds, namely

Theorem 1.1. There do not exist Ricci solitons on almost cosymplectic (κ, µ)-manifolds
with κ < 0.

Next we consider a three-dimensional almost f -cosymplectic manifold admit-
ting a Ricci soliton whose potential vector field is the Reeb vector field ξ, and
prove the following theorem.

Theorem 1.2. A three-dimensional almost f -cosymplectic manifold M admits a Ricci
soliton whose potential vector field is ξ if and only if ξ is Killing and M is Ricci flat.
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As it is well known that a (2n + 1)-dimensional almost contact manifold
(M, φ, ξ, η, g) is said to be η-Einstein if its Ricci tensor satisfies

Ric = ag + bη ⊗ η, (1.3)

where a and b are smooth functions. For a three-dimensional η-Einstein almost
f -cosymplectic manifold M with a Ricci soliton we prove the following result:

Theorem 1.3. Let (M, φ, η, ξ, g) be a three-dimensional η-Einstein almost f -cosym-
plectic manifold admitting a Ricci soliton. Then either M is an α-cosymplectic manifold,
or M is an Einstein manifold of constant sectional curvature λ

2 with λ = −2ξ( f )− 2 f 2.

Remark 1.1. Our theorem extends the Wang and Liu’s result [18]. In fact, when
f = 1 then a = −2 in view of Proposition 5.1 in Section 5. Thus it follows from
(2.8) that trace(h2) = 0, i.e., h = 0. So M is also a Kenmotsu manifold of sectional
curvature −1.

In order to prove these conclusions, in Section 2 we recall some basic concepts
and formulas. The proofs of theorems will be given in Section 3, Section 4 and
Section 5, respectively.

2 Some basic concepts and related results

In this section we will recall some basic concepts and equations. Let M2n+1 be a
(2n + 1)-dimensional Riemannian manifold. An almost contact structure on M is a
triple (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ a unit vector field, η a one-form
dual to ξ satisfying

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0. (2.1)

A smooth manifold with such a structure is called an almost contact manifold.
It is well-known that there exists a Riemannian metric g such that

g(φX, φY) = g(X, Y) − η(X)η(Y), (2.2)

for any X, Y ∈ X(M). It is easy to get from (2.1) and (2.2) that

g(φX, Y) = −g(X, φY), g(X, ξ) = η(X). (2.3)

An almost contact structure (φ, ξ, η) is said to be normal if the corresponding
complex structure J on M × R is integrable.

Denote by ω the fundamental 2-form on M defined by ω(X, Y) := g(φX, Y)
for all X, Y ∈ X(M). An almost α-cosymplectic manifold ([11, 14]) is an almost
contact metric manifold (M, φ, ξ, η, g) such that the fundamental form ω and
1-form η satisfy dη = 0 and dω = 2αη ∧ ω, where α is a real number. In particu-
lar, M is an almost cosymplectic manifold if α = 0 and an almost Kenmotsu manifold
if α = 1. In [1], a class of more general almost contact manifolds was defined by
generalizing the real number α to a smooth function f . More precisely, an almost
contact metric manifold is called an almost f -cosymplectic manifold if dη = 0 and
dω = 2 f η ∧ ω are satisfied, where f is a smooth function with d f ∧ η = 0. In



308 X. Chen

addition, a normal almost f -cosymplectic manifold is said to be an f -cosymplectic
manifold.

Let M be an almost f -cosymplectic manifold, we recall that there is an opera-
tor h = 1

2Lξφ which is a self-dual operator. The Levi-Civita connection is given
by (see [1])

2g((∇Xφ)Y, Z) = 2 f g(g(φX, Y)ξ − η(Y)φX, Z) + g(N(Y, Z), φX) (2.4)

for arbitrary vector fields X, Y, where N is the Nijenhuis torsion of M. Then by a
simple calculation, we have

trace(h) = 0, hξ = 0, φh = −hφ, g(hX, Y) = g(X, hY), ∀X, Y ∈ X(M).

Write AX := ∇Xξ for any vector field X. Thus A is a (1, 1)-tensor of M. Using
(2.4), a straightforward calculation gives

AX = − f φ2X − φhX (2.5)

and ∇ξφ = 0. By (2.3), it is obvious that Aξ = 0 and A is symmetric with respect
to metric g, i.e., g(AX, Y) = g(X, AY) for all X, Y ∈ X(M). We denote by R
and Ric the Riemannian curvature tensor and Ricci tensor, respectively. For an
almost f -cosymplectic manifold (M2n+1, φ, ξ, η, g) the following equations were
proved([1]):

R(X, ξ)ξ − φR(φX, ξ)ξ = 2[(ξ( f ) + f 2)φ2X − h2X], (2.6)

(∇ξh)X = −φR(X, ξ)ξ − [ξ( f ) + f 2]φX − 2 f hX − φh2X, (2.7)

Ric(ξ, ξ) = −2n(ξ( f ) + f 2)− trace(h2), (2.8)

trace(φh) = 0, (2.9)

R(X, ξ)ξ = [ξ( f ) + f 2]φ2X + 2 f φhX − h2X + φ(∇ξh)X, (2.10)

for any vector fields X, Y on M.

3 Proof of Theorem 1.1

In this section we suppose that (M, φ, ξ, η, g) is an almost cosymplectic
(κ, µ)-manifold, i.e., the curvature tensor satisfies (1.2). In the following we
always suppose κ < 0. The following relations are provided(see [12, Eq.(3.22)
and Eq.(3.23)]):

Q =2nκη ⊗ ξ + µh, (3.1)

h2 =κφ2, (3.2)

where Q is the Ricci operator defined by Ric(X, Y) = g(QX, Y) for any vectors
X, Y. In particular, Qξ = 2nκξ because of hξ = 0.

In view of (3.1) and the Ricci soliton equation (1.1), we obtain

(LV g)(Y, Z) = 2λg(Y, Z) − 2µg(hY, Z) − 4nκη(Y)η(Z) (3.3)
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for any vectors Y, Z. Since κ, µ are two real numbers and ∇Xξ = AX, differenti-
ating (3.3) along any vector field X provides

(∇XLV g)(Y, Z) =∇X((LV g)(Y, Z)) −LV g(∇XY, Z)−LV g(Y,∇X Z) (3.4)

=− 2µg((∇Xh)Y, Z) − 4nκ∇X(η(Y))η(Z) − 4nκη(Y)∇X(η(Z))

+ 4nκη(∇XY)η(Z) + 4nκη(Y)η(∇X Z)

=− 2µg((∇Xh)Y, Z) − 4nκg(Y, AX)η(Z) − 4nκη(Y)g(Z, AX).

Moreover, making use of the commutation formula (see [20]):

(LV∇Xg −∇XLV g −∇[V,X]g)(Y, Z) =

− g((LV∇)(X, Y), Z) − g((LV∇)(X, Z), Y),

we derive

(∇XLV g)(Y, Z) = g((LV∇)(X, Y), Z) + g((LV∇)(X, Z), Y). (3.5)

It follows from (3.4) and (3.5) that

g((LV∇)(Y, Z), X) =
1

2

{

(∇ZLV g)(Y, X) + (∇YLV g)(Z, X) − (∇XLV g)(Y, Z)
}

(3.6)

=− µ
{

g((∇Zh)Y, X) + g((∇Yh)Z, X) − g((∇Xh)Y, Z)

− 4nκg(Y, AZ)η(X)
}

.

Hence for any vector Y,

(LV∇)(Y, ξ) = −µ
{

(∇ξh)Y + 2κφY
}

(3.7)

by using (3.2) and (2.5). Lie differentiating (3.7) along V and making use of the
identity([20]):

(LV R)(X, Y)Z = (∇XLV∇)(Y, Z) − (∇YLV∇)(X, Z), (3.8)

we obtain

(LV R)(X, ξ)ξ =(∇XLV∇)(ξ, ξ) − (∇ξLV∇)(X, ξ) (3.9)

=− 2(LV∇)(∇Xξ, ξ) − (∇ξLV∇)(X, ξ)

=− 2µ
{

(∇ξh)∇Xξ + 2κφ∇Xξ
}

+ µ{(∇ξ∇ξh)X)}

=− 2µ
{

φ(∇ξh)hX + 2κhX
}

+ µ{(∇ξ∇ξh)X)}.

Since trace(h) = 0, contracting (3.9) over X gives

(LV Ric)(ξ, ξ) =µ trace(∇ξ∇ξh − 2φ(∇ξh)h).
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Next we compute ∇ξ∇ξh − 2φ(∇ξh)h: By (2.7), (3.2) and (2.1), we get
∇ξh = −µφh, thus

∇ξ∇ξh − 2φ(∇ξh)h = µh − 2κµφ2.

This means that
(LV Ric)(ξ, ξ) = 4nκµ2. (3.10)

On the other hand, by Lie differentiating the formula Ric(ξ, ξ) = 2nκ along V,
we also obtain

(LV Ric)(ξ, ξ) = −4nκg(LV ξ, ξ).

Thus it follows from (3.10) that g(LV ξ, ξ) = −µ2.
Furthermore, notice that the Ricci tensor equation (3.1) implies the scalar cur-

vature r = 2nκ and recall the following integrability formula (see [16, Eq.(5)]):

LVr = −∆r − 2λr + 2||Q||2

for a Ricci soliton. By (3.1), (3.2) and the foregoing formula we thus obtain
λ = 2nκ − µ2. Also, it follows from (3.3) that g(LVξ, ξ) = 2nκ − λ. Therefore
g(LV ξ, ξ) = µ2. Hence we find µ = 0. However, from (3.4), (3.5) and (3.6), we
have

g(Y, AX)η(Z) + g(Z, AX)η(Y) = 0

since κ < 0. Now putting Z = ξ gives g(Y, AX) = 0 for any vector fields X, Y
because Aξ = 0. That means that AX = 0 for any vector field X. From (2.5) with
f = 0, we get h = 0. Clearly, it is impossible. Therefore we complete the proof.

4 Proof of Theorem 1.2

In this section we assume that M is a three dimensional almost f -cosymplectic
manifold and the potential vector field V is the Reeb vector field. Before giving
the proof, we need to prove the following lemma.

Lemma 4.1. For any almost f -cosymplectic manifold the following formula holds:

(Lξ R)(X, ξ)ξ =2ξ( f )φhX − 2[ f (∇ξh)φX + (∇ξh)hX]

+ [ξ(ξ( f )) + 2 f ξ( f )]φ2X + φ(∇ξ∇ξh)X.

Proof. Obviously, Lξη = 0 because Aξ = 0. Notice that for any vector fields
X, Y, Z the 1-form η satisfies the following relation([20]):

−η((LX∇)(Y, Z)) = (LX(∇Yη)−∇Y(LXη)−∇[X,Y]η)(Z). (4.1)

Putting X = ξ and using (2.5) yields

−η((Lξ∇)(Y, Z)) =(Lξ(∇Yη)−∇Y(Lξη)−∇[ξ,Y]η)(Z) (4.2)

=∇ξ((∇Yη)(Z)) − (∇Yη)(Lξ Z)− g(A([ξ, Y]), Z)

=∇ξ g(AY, Z) − g(AY, [ξ, Z]) − g(A([ξ, Y]), Z)

=g((∇ξ A)Y, Z) + 2g(AY, AZ).
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In view of (3.5), we obtain from (4.2) that

g((Lξ∇)(X, ξ), Y) =(∇XLξ g)(Y, ξ) − g((Lξ∇)(X, Y), ξ)

=− 2g(AX, AY) + g((∇ξ A)X, Y) + 2g(AX, AY)

=ξ( f )g(φX, φY) + g((∇ξh)X, φY).

That is,
(Lξ∇)(X, ξ) = −[ξ( f )]φ2X − φ(∇ξh)X.

Obviously, for any vector field X, we know (Lξ∇)(X, ξ) = (Lξ∇)(ξ, X) from
(3.6). Therefore we compute the Lie derivative of R(X, ξ)ξ along ξ as follows:

(Lξ R)(X, ξ)ξ =(∇XLξ∇)(ξ, ξ) − (∇ξLξ∇)(X, ξ)

=− (Lξ∇)(∇Xξ, ξ) − (Lξ∇)(ξ,∇X ξ)− (∇ξLξ∇)(X, ξ)

=2[ξ( f )]φ2 AX + 2φ(∇ξh)AX − (∇ξLξ∇)(X, ξ)

=2ξ( f )( f φ2 X + φhX) + 2[− f (∇ξh)φX − (∇ξh)hX]

+ [ξ(ξ( f ))]φ2 X + φ(∇ξ∇ξh)X.

Here we used ∇ξφ = 0 and φ∇ξh = −(∇ξh)φ followed from hφ + φh = 0.

Proof of Theorem 1.2. Now we suppose that the potential vector V = ξ in the
Ricci equation (1.1). Then for any X ∈ X(M),

− f φ2X − φhX + QX = λX. (4.3)

Putting X = ξ in (4.3), we have
Qξ = λξ. (4.4)

Moreover, the above formula together (2.8) with n = 1 leads to

trace(h2) = −λ − 2 f 2 − 2ξ( f ). (4.5)

Since the curvature tensor of a 3-dimension Riemannian manifold is given by

R(X, Y)Z =g(Y, Z)QX − g(X, Z)QY + g(QY, Z)X − g(QX, Z)Y (4.6)

−
r

2
{g(Y, Z)X − g(X, Z)Y},

where r denotes the scalar curvature. Putting Y = Z = ξ in (4.6) and applying
(4.3) and (4.4), we obtain

R(X, ξ)ξ =
( r

2
+ f − 2λ

)

φ2X + φhX. (4.7)

Contracting the above formula over X leads to Ric(ξ, ξ) = −r − 2 f + 4λ, which
follows from (4.4) that

r + 2 f = 3λ. (4.8)

Taking the Lie derivative of (4.7) along ξ and using (4.8), we obtain

(Lξ R)(X, ξ)ξ = 2h2X + φ(Lξh)X (4.9)
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since Lξφ2 = 2φh + 2hφ = 0 and h = 1
2Lξφ. By Lemma 4.1 and (4.9), we get

2ξ( f )φhX − 2[ f (∇ξh)φX + (∇ξh)hX] (4.10)

+ [ξ(ξ( f )) + 2 f ξ( f )]φ2X + φ(∇ξ∇ξh)X

=2h2X + φ(Lξh)X.

By virtue of (2.7) and (4.7), we have

(∇ξh)X =
(

−
λ

2
− ξ( f ) − f 2

)

φX + (1 − 2 f )hX − φh2X. (4.11)

Making use of the above equation we further compute

φ(∇ξ∇ξh)X =
(

− ξξ( f ) − 2 f ξ( f )
)

φ2X − 2ξ( f )φhX + (1 − 2 f )φ(∇ξ h)X (4.12)

+ (∇ξh)hX + h(∇ξ h)X.

As well as via (2.5) we get

φ(Lξh)X =φLξ(hX)− φh([ξ, X]) (4.13)

=φ(∇ξh)X + φ(hA − Ah)X

=φ(∇ξh)X − 2h2X.

Substituting (4.12) and (4.13) into (4.10), we derive

−(∇ξh)hX + h(∇ξh)X = 0. (4.14)

Further, applying (4.11) in the formula (4.14), we get

(

− λ − 2 f 2 − 2ξ( f )
)

hX − h3X = 0.

Write β := −λ − 2 f 2 − 2ξ( f ), then the above equation is rewritten as h3X = βhX
for every vector X. Denote by ei and λi the eigenvectors and the corresponding
eigenvalues for i = 1, 2, 3, respectively. If h 6= 0 then there is a nonzero eigenvalue
λ1 6= 0 satisfying λ3

1 = βλ1, i.e., λ2
1 = β. Since trace(h) = 0 and trace(h2) = β

by (4.4), we have ∑
3
i=1 λi = 0 and ∑

3
i=1 λ2

i = β. This shows λ2 = λ3 = 0, which
further leads to λ1 = 0. It is a contradiction. Thus we have

β = −(λ + 2 f 2 + 2ξ( f )) = 0 and h = 0. (4.15)

On the other hand, taking the covariant differentiation of Qξ = λξ (see (4.4))
along arbitrary vector field X and using (2.5), one can easily deduce

(∇XQ)ξ + Q(− f φ2X − φhX) = −λ( f φ2X + φhX).

Contracting this equation over X and using (4.3), we derive

1

2
ξ(r) − 2 f 2 − trace(h2) = 0.
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By virtue of (4.4) and (4.8), the foregoing equation yields

ξ( f ) + λ = 0. (4.16)

This shows that ξ( f ) is constant, then it infers from (4.15) that f = 0 and λ = 0,
that means that M is cosymplectic. Therefore it follows from (2.5) that
(Lξ g)(X, Y) = 2g(AX, Y) = 0 for any vectors X, Y. By (4.3), it is obvious that
Q = 0. Thus we complete the proof of Theorem 1.2.

By the proof of Theorem 1.2, the following result is clear.

Corollary 4.1. A three-dimensional almost α-Kenmotsu manifold (M, φ, η, ξ, g) does
not admit a Ricci soliton with potential vector field being ξ.

5 Proof of Theorem 1.3

In this section we assume that M is a three dimensional η-Einstein almost
f -cosymplectic manifold, i.e., the Ricci tensor Ric = ag + bη ⊗ η. We first prove
the following proposition.

Proposition 5.1. Let M be a three dimensional η-Einstein almost f -cosymplectic mani-
fold. Then the following relation is satisfied:

2ξ( f ) + 2 f 2 + (a + b) = 0.

Proof. Since M is η-Einstein, we know that Qξ = (a+ b)ξ and the scalar curvature
r = 3a + b. Hence it follows from (4.6) that

R(X, ξ)ξ =−
a + b

2
φ2X. (5.1)

By Lie differentiating (5.1), we derive

(Lξ R)(X, ξ)ξ = −
ξ(a + b)

2
φ2X. (5.2)

Also, it follows from (5.1) and (2.7) that

(∇ξh)X =− [ξ( f ) + f 2 +
1

2
(a + b)]φX − 2 f hX − φh2X. (5.3)

Moreover, we get

φ(∇ξ∇ξh)X =−
[

ξ(ξ( f )) + 2 f ξ( f ) +
ξ(a + b)

2

]

φ2X (5.4)

− 2ξ( f )φhX − 2 f φ(∇ξh)X + (∇ξh)hX + h(∇ξh)X.

Therefore by using (5.3) and (5.4), the formula of Lemma 4.1 becomes

(Lξ R)(X, ξ)ξ =−
ξ(a + b)

2
φ2X − (∇ξh)hX + h(∇ξh)X

=−
ξ(a + b)

2
φ2X + 2

[

ξ( f ) + f 2 +
1

2
(a + b)

]

φhX + 2φh3X.
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Combining this with (5.2) yields

0 = [ξ( f ) + f 2 +
1

2
(a + b)]hX + h3X. (5.5)

As in the proof of (4.15), the formula (5.5) yields the assertion.

Proof of Theorem 1.3. In view of Proposition 5.1, we know a + b =
−2ξ( f ) − 2 f 2. Because (LV g)(Y, Z) = 2λg(Y, Z) − 2g(QY, Z) for any vector
fields Y, Z, we compute

(∇XLV g)(Y, Z) = −2g((∇XQ)Y, Z)

=− 2g(X(a)Y + X(b)η(Y)ξ + bg(AX, Y)ξ + bη(Y)AX, Z).

Hence

g((LV∇)(Y, Z), X) =
1

2

{

(∇ZLV g)(Y, X) + (∇YLV g)(Z, X) − (∇XLV g)(Y, Z)
}

=−
{

g(Z(a)Y + Z(b)η(Y)ξ + bg(AZ, Y)ξ + bη(Y)AZ, X)

+ g(Y(a)Z + Y(b)η(Z)ξ + bg(AY, Z)ξ + bη(Z)AY, X)

− g(X(a)Y + X(b)η(Y)ξ + bg(AX, Y)ξ + bη(Y)AX, Z)
}

=−
{

Z(a)g(Y, X) + Z(b)η(Y)η(X) + Y(a)g(X, Z)+

Y(b)η(Z)η(X) + 2bη(X)g(AY, Z) − X(a)g(Y, Z)−

X(b)η(Y)η(Z)
}

.

That means that

(LV∇)(Y, Z) = −Z(a)Y − Z(b)η(Y)ξ − Y(a)Z − Y(b)η(Z)ξ (5.6)

− 2bg(AY, Z)ξ + g(Z, Y)∇a + η(Y)η(Z)∇b.

Taking the covariant differentiation of (LV∇)(Y, Z) along any vector field X, we
may obtain

(∇XLV∇)(Y, Z)

= −g(Z,∇X∇a)Y − g(Z,∇X∇b)η(Y)ξ − Z(b)g(AX, Y)ξ

− Z(b)η(Y)AX − g(Y,∇X∇a)Z − g(Y,∇X∇b)η(Z)ξ − Y(b)g(AX, Z)ξ

− Y(b)η(Z)AX − 2X(b)g(AY, Z)ξ − 2bg((∇X A)Y, Z)ξ − 2bg(AY, Z)AX

+ g(Z, Y)∇X∇a + g(AX, Y)η(Z)∇b + η(Y)g(AX, Z)∇b + η(Y)η(Z)∇X∇b.
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Thus by virtue of (3.8) we have

(LV R)(X, Y)Z

=(∇XLV∇)(Y, Z) − (∇YLV∇)(X, Z)

=− g(Z,∇X∇a)Y − g(Z,∇X∇b)η(Y)ξ − Z(b)η(Y)AX − Y(b)g(AX, Z)ξ

− Y(b)η(Z)AX − 2X(b)g(AY, Z)ξ − 2bg((∇X A)Y, Z)ξ − 2bg(AY, Z)AX

+ g(Z, Y)∇X∇a + η(Y)g(AX, Z)∇b + η(Y)η(Z)∇X∇b

−
[

− g(Z,∇Y∇a)X − g(Z,∇Y∇b)η(X)ξ − Z(b)η(X)AY − X(b)g(AY, Z)ξ

− X(b)η(Z)AY − 2Y(b)g(AX, Z)ξ − 2bg((∇Y A)X, Z)ξ − 2bg(AX, Z)AY

+ g(Z, X)∇Y∇a + η(X)g(AY, Z)∇b + η(X)η(Z)∇Y∇b
]

since g(X,∇Y∇ζ) = g(Y,∇X∇ζ) for any function ζ and vector fields X, Y fol-
lowed from Poincaré lemma.

By contracting over X in the previous formula, we have

(LV Ric)(Y, Z) (5.7)

=g(Z,∇Y∇a)− g(Z,∇ξ∇b)η(Y) − 2 f Z(b)η(Y)

− 2 f Y(b)η(Z) − 2ξ(b)g(AY, Z) − 2bg((∇ξ A)Y, Z) − 4 f bg(AY, Z)

+ g(Z, Y)∆a + η(Y)g(A∇b, Z) + η(Y)η(Z)∆b

−
[

− g(Z,∇Y∇b)− AY(b)η(Z) + η(Z)g(∇Y∇b, ξ)
]

.

On the other hand, since QX = aX + bη(X)ξ and r = 3a + b, the equation
(4.6) is expressed as

R(X, Y)Z =bg(Y, Z)η(X)ξ − bg(X, Z)η(Y)ξ + bη(Y)η(Z)X − bη(X)η(Z)Y

(5.8)

+
a − b

2
[g(Y, Z)X − g(X, Z)Y].

Thus we get the Lie derivative of R(X, Y)Z along V from (5.8)

(LV R)(X, Y)Z (5.9)

=V(b)g(Y, Z)η(X)ξ + b(LV g)(Y, Z)η(X)ξ

+ bg(Y, Z)(LV η)(X)ξ + bg(Y, Z)η(X)LV ξ

− [V(b)g(X, Z)η(Y)ξ + b(LV g)(X, Z)η(Y)ξ

+ bg(X, Z)(LV η)(Y)ξ + bg(X, Z)η(Y)LV ξ]

+ V(b)η(Y)η(Z)X + b(LV η)(Y)η(Z)X + bη(Y)(LV η)(Z)X

− [V(b)η(X)η(Z)Y + b(LV η)(X)η(Z)Y + bη(X)(LV η)(Z)Y]

+
V(a − b)

2
[g(Y, Z)X − g(X, Z)Y] +

a − b

2
[(LV g)(Y, Z)X − (LV g)(X, Z)Y].
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Contracting over X in (5.9) gives

(LV Ric)(Y, Z) (5.10)

=V(b)g(Y, Z) + b(LV g)(Y, Z) + bg(Y, Z)(LV η)(ξ)

+ bg(Y, Z)g(LV ξ, ξ) − [V( b)η(Z)η(Y) + b(LV g)(ξ, Z)η(Y)

+ bη(Z)(LV η)(Y) + bη(Y)g(LV ξ, Z)]

+ 3V(b)η(Y)η(Z) + 3b(LVη)(Y)η(Z) + 3bη(Y)(LV η)(Z)

− [V(b)η(Y)η(Z) + b(LV η)(Y)η(Z) + bη(Y)(LV η)(Z)]

+
V(a − b)

2
[2g(Y, Z)] +

a − b

2
[2(LV g)(Y, Z)]

=bg(Y, Z)g(LV ξ, ξ) − [b(LV g)(ξ, Z)η(Y) + bη(Y)g(LV ξ, Z)]

+ V(b)η(Y)η(Z) + b(LV η)(Y)η(Z) + 2bη(Y)(LV η)(Z)

+ V(a)g(Y, Z) + a(LV g)(Y, Z)

=bg(Y, Z)g(LV ξ, ξ) − [2b(λ − a − b)η(Z)η(Y) + bη(Y)g(LV ξ, Z)]

+ V(b)η(Y)η(Z) + b[g(AY, V) + η(∇YV)]η(Z)

+ 2bη(Y)[g(AZ, V) + η(∇ZV)] + V(a)g(Y, Z)

+ a
(

2λg(Y, Z) − 2ag(Y, Z) − 2bη(Y)η(Z)
)

.

Finally, by comparing (5.10) with (5.7) we get

g(Z,∇Y∇a)− g(Z,∇ξ∇b)η(Y) − 2 f Z(b)η(Y)

− 2 f Y(b)η(Z) − 2ξ(b)g(AY, Z) − 2bg((∇ξ A)Y, Z) − 4 f bg(AY, Z)

+ g(Z, Y)∆a + η(Y)g(A∇b, Z) + η(Y)η(Z)∆b

−
[

− g(Z,∇Y∇b)− AY(b)η(Z) + η(Z)g(∇Y∇b, ξ)
]

=bg(Y, Z)g(LV ξ, ξ) − [2b(λ − a − b)η(Z)η(Y) + bη(Y)g(LV ξ, Z)]

+ V(b)η(Y)η(Z) + b[g(AY, V) + η(∇YV)]η(Z)

+ 2bη(Y)[g(AZ, V) + η(∇ZV)] + V(a)g(Y, Z)

+ a(2λg(Y, Z) − 2ag(Y, Z) − 2bη(Y)η(Z)).

Replacing Y and Z by φY and φZ respectively leads to

g(φZ,∇φY∇a)− 2ξ(b)g(AφY, φZ) − 2bg((∇ξ A)φY, φZ) (5.11)

− 4 f bg(AφY, φZ) + g(φZ, φY)∆a −
[

− g(φZ,∇φY∇b)
]

=bg(φY, φZ)g(LV ξ, ξ) + V(a)g(φY, φZ) + 2a(λ − a)g(φY, φZ).

Because ∑
3
i=1(LV(ei, ei)) = 0 (see [7, Eq.(9)]), by (5.6) we obtain the gradient field

∇(a + b) = 2[ξ(b) + 2 f b]ξ. (5.12)

Therefore the formula (5.11) can be simplified as

−2bg((∇ξ A)φY, φZ) + g(φZ, φY)∆a (5.13)

=bg(φY, φZ)g(LV ξ, ξ) + V(a)g(φY, φZ) + 2a(λ − a)g(φY, φZ).
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Moreover, using (2.5) and (5.3) we compute

(∇ξ A)φY =− ξ( f )φ3Y + φ2(∇ξh)Y

=ξ( f )φY +
( a + b

2
+ ξ( f ) + f 2

)

φY + 2 f hY + φh2Y

=
( a + b

2
+ 2ξ( f ) + f 2

)

φY + 2 f hY + φh2Y.

Substituting this into (5.13) yields

−2bg(2 f hY + φh2Y, φZ) (5.14)

=
{

bg(LV ξ, ξ) + 2b
[ a + b

2
+ 2ξ( f ) + f 2

]

− ∆a + V(a) + 2a(λ − a)
}

g(φY, φZ).

Replacing Z by φY in (5.14) gives

0 = bg(2 f hY + φh2Y, φ2Y) = −bg(2 f hY + φh2Y, Y). (5.15)

Next we divide into two cases.
Case I: h = 0. Then the Eq.(2.8) and Proposition 5.1 imply ξ( f ) = 0, i.e.,

f is constant as ∇ f = ξ( f )ξ followed from d f ∧ η = 0, so M is an α-cosymplectic
manifold.

Case II: h 6= 0. Suppose that Y = e is an unit eigenvector corresponding to
the nonzero eigenvalue λ′ of h, then we may obtain from (5.15) that f b = 0. If
the function b is not zero, there is an open neighborhood U such that b|U 6= 0,
so f |U = 0. By Proposition 5.1 it implies (a + b)|U = 0. Notice that trace(h2) =
−(a + b) − 2(ξ f + f 2), so we have trace(h2)|U = 0, i.e., h|U = 0. It comes to
a contradiction, so b = 0 and a is constant by (5.12). Hence by (1.3) we obtain
Ric = ag, where a = −2ξ( f ) − 2 f 2. Moreover, we know λ = a or a = 0 by (5.13).
Finally we show a 6= 0. In fact, if a = 0 then ξ( f ) = − f 2. Substituting this into
(2.8) we find trace(h2) = −2(ξ( f ) + f 2) = 0, which is impossible because h 6= 0.

Thus we obtain from (5.8)

R(X, Y)Z =
λ

2
(g(Y, Z)X − g(X, Z)Y).

Summing up the above two cases we finish the proof Theorem 1.3.
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