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Abstract

Let f : X → X be a self–map with X a wedge of circles or a compact sur-
face with boundary, so that the fundamental group of X is finitely generated
and free. In [3], Wagner presents an algorithm for extracting information
from the homomorphism induced by f on the fundamental group. This in-
formation involves the fixed point index of f and the Nielsen classes of fixed
points of f .

The step in which the representatives of Nielsen classes, Wagner tails,
are calculated is equivalent to a step in the method presented by Fadell and
Husseini in [1].

The Fadell–Husseini method was designed for closed two dimensional
CW–complexes, but the step in which they use the Fox calculus, to determine
terms in the unreduced Reidemeister trace, produces the Wagner tails and
their indices.

The equivalence of these steps was stated in [2] without proof. Further
developments in this area have caused continued interest in the techniques,
and a clarification of the equivalence is needed. Here we provide the proof
and an example.

1 Introduction

Let f : X → X be a self–map with X a wedge of circles or a compact surface with
boundary, so that the fundamental group of X is finitely generated and free. Let
Fr be the free group on r generators, and let f∗ : Fr → Fr be the homomorphism
induced by the map f .
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Consider a generator a of Fr. The word f∗(a) contains information regarding
algebraic representatives of Nielsen fixed point classes as well as contributions to
the fixed point index of such classes. See [2] for details.

As described in Section 2, Wagner’s algorithm produces initial subwords of
f∗(a), called initial Wagner tails W1, . . . , Wn, which are algebraic representatives
of non–empty Nielsen fixed point classes. In addition, the algorithm finds contri-
butions toward the index of each such class, with ǫj ∈ {−1, 1} being the contri-
bution of Wj to the index of the class containing the word Wj.

We use here the notation that corresponds to the Reidemeister action f∗(a) =
WjaW j

−1. When comparing with papers that use a different notation, slight ad-
justments must be made.

In Section 4, we present the relevant step from the The Fadell–Husseini method
from [1]. The Fox derivative applied to the word f∗(a) produces an element of
Z[Fr ], and the coefficients contribute to the index of the related Nielsen fixed
point classes.

Our main result is that these two calculations produce the same information.

Theorem 1.1. [Main Result] With the notation given above, we have

∂ f∗(a)

∂a
=

n

∑
j=1

ǫjWj.

Note that, for the Fadell–Husseini method, this term contributes to the trace

in dimension 1 for the alternating sum that is the Fox trace. Thus
∂ f∗(a)

∂a appears
with a coefficient of −1 in the Fox trace.

2 Determining Initial Wagner Tails

Let G = {a1, . . . , ar} be a set of generators for Fr . Let a ∈ G. Assume that a±1

occurs exactly n times in the word f∗(a). Then there are (possibly trivial) elements
u0, u1, . . . , un in the free group generated by G\{a} and exponents ǫi = ±1 such
that f∗(a) = u0aǫ1 u1aǫ2 u2 · · · aǫn un.

Let αj be the initial segment of f∗(a) that occurs before the j–th occurrence of

a±1 in f∗(a). That is, let αj = u0aǫ1 u1aǫ2 u2 · · · uj−1. The initial Wagner tail Wj is
given by

Wj =

{

αj if ǫj = 1,

αja
−1 if ǫj = −1.

Also, the corresponding fixed point has index −ǫj.

3 Example, Part I:

Let G = {a, b, c, d}. Suppose that f∗(a) = b5a3cb−1a−2d.
We have three occurrences of a and two occurrences of a−1 in f∗(a), and thus

n = 5. The table below provides for each j the index ǫj and the initial Wagner tail,
Wj.
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j ǫj αj Wj

1 1 b5 b5

2 1 b5a b5a
3 1 b5a2 b5a2

4 −1 b5a3cb−1 b5a3cb−1a−1

5 −1 b5a3cb−1a−1 b5a3cb−1a−2

4 Using the Fox Derivative

The Fadell–Husseini method, as described in [1] and in [2], is applied to closed
surfaces with one–relator fundamental groups. By using zero as the trace in
dimension two, the same method can be applied to the spaces considered by
Wagner.

Fadell and Husseini use the Fox derivative of f∗(a), defined below, to calcu-
late the trace in dimension one of the Fox trace. This Fox trace is the unreduced
version of the Reidemeister trace used to determine the Nielsen number of f .

Let G = {a1, . . . , ar} be a set of generators for Fr . The Fox derivatives for

words in Fr are defined as follows: For any ai, aj ∈ G, ∂1
∂ai

= 0;
∂aj

∂ai
= δij; and, for

any u, v ∈ Fr , ∂
∂ai

(uv) = ∂u
∂ai

+ u ∂v
∂ai

. Then ∂
∂ai

is a function from Fr to the free Z

module over Fr .

Proposition 4.1. For any w ∈ Fr and any a ∈ G, we have ∂w−1

∂a = −w−1 ∂w
∂a .

Proof. Note that 0 = ∂1
∂a = ∂

∂a(w
−1w) = ∂w−1

∂a + w−1 ∂w
∂a . The result follows.

Proposition 4.2. Let a ∈ G and u ∈ Fr such that u is in the free group generated

by G\{a}. Then ∂
∂a (u) = 0, ∂

∂a (au) = 1, and ∂
∂a(a

−1u) = −a−1.

Proof. If u = 1, the result follows from the definition and from Proposition 4.1.
Otherwise, we can express u uniquely as a reduced word x1x2 . . . xk so that for

each i either xi ∈ G\{a} or xi
−1 ∈ G\{a}.

We induct on k. Suppose u = x1 ∈ G\{a}. We have that ∂u
∂a = 0 because

x1 6= a±1. For larger k we have u = (x1x2 . . . xk−1)xk, so that by induction

∂u

∂a
=

∂x1x2 . . . xk−1

∂a
+ x1x2 . . . xk−1

∂xk

∂a
= 0 + (x1x2 . . . xk−1)(0) = 0.

Thus ∂u
∂a = 0.

From this we have ∂au
∂a = ∂a

∂a + a ∂u
∂a = 1 + (a)(0) = 1. Similarly, ∂a−1u

∂a =

∂a−1

∂a + a−1 ∂u
∂a = −a−1 + (a−1)(0) = −a−1.

Proposition 4.3. Let a ∈ G and u ∈ Fr such that u is in the free group generated

by G\{a}. Then ∂
∂a (ua) = u, and ∂

∂a(ua−1) = −ua−1.
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Proof. Because u is in the free group generated by G\{a}, the same is true

for u−1. By Proposition 4.1 and Proposition 4.2, we have ∂
∂a (ua) = ∂u

∂a + u ∂a
∂a =

0 + (u)(1) = u.

Similarly, ∂
∂a (ua−1) = ∂u

∂a + u ∂a−1

∂a = 0 + (u)(−a−1) = −ua−1.

Proposition 4.4. Let a ∈ G and u0, u1 ∈ Fr such that u0 and u1 are in the free group

generated by G\{a}. We have that ∂
∂a(u0au1) = u0 and ∂

∂a(u0a−1u1) = −u0a−1.

Proof.

Note that ∂
∂a (u0au1) = ∂

∂a(u0a) + u0a ∂
∂a (u1) = u0 + (u0a)(0) = u0. Similarly,

∂
∂a (u0a−1u1) =

∂
∂a(u0a−1) + u0a−1 ∂

∂a (u1) = −u0a−1 + (u0a−1)(0) = −u0a−1.
Let a ∈ G and w ∈ Fr . For some n there are possibly trivial words u0, u1, . . . , un

in the free group generated by G\{a} and exponents ǫi = ±1 such that
w = u0aǫ1 u1aǫ2 u2 · · · aǫn un.

Proposition 4.5. With w as above,

∂w

∂a
=

n

∑
j=1

ǫju0aǫ1 u1 · · · aǫj−1uj−1aγj ,

where γj = 0 if ǫj = 1, and γj = −1 if ǫj = −1.

Proof. We induct on n. The base case is proven in the propositions above. Sup-
pose that n = k+ 1. Let w = u0aǫ1 u1aǫ2 u2 · · · aǫk+1uk+1, and let w̃ = u0aǫ1 u1aǫ2 u2 · · ·
aǫk uk. Then w = w̃aǫk+1uk+1. We have

∂w

∂a
=

∂w̃aǫk+1uk+1

∂a
=

∂w̃

∂a
+ w̃

∂aǫk+1uk+1

∂a
=

∂w̃

∂a
+ w̃(ǫk+1aγk+1)

=

(

k

∑
j=1

ǫju0aǫ1 u1 · · · aǫj−1uj−1aγj

)

+ (u0aǫ1 u1 · · · aǫk uk)(ǫk+1aγk+1)

=
k+1

∑
j=1

ǫju0aǫ1 u1 · · · aǫj−1 uj−1aγj .�

5 Example Part 2:

Again, let G = {a, b, c, d} and f∗(a) = b5a3cb−1a−2d.
We see that u0 = b5, u1 = u2 = 1, u3 = cb−1, u4 = 1, and u5 = d. Also,

ǫ1 = ǫ2 = ǫ3 = 1, and ǫ4 = ǫ5 = −1.
By Proposition 4.5, we have

∂ f∗(a)

∂a
= b5 + b5a + b5a2 − b5a3cb−1a−1 − b5a3cb−1a−2.
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6 The Main Result

Theorem 1.1 With the notation given above, we have

∂ f∗(a)

∂a
=

n

∑
j=1

ǫjWj.

Proof. First we use the earlier notation to express f∗(a) as f∗(a) = u0aǫ1 u1aǫ2 u2

· · · aǫn un. In Proposition 4.5, we replace w with f∗(a) and note that for each j we
have αj = u0aǫ1 u1aǫ2 u2 · · · aǫj−1 uj−1 so that

∂ f∗(a)

∂a
=

n

∑
j=1

ǫjαja
γj ,

where γj = 0 if ǫj = 1, and γj = −1 if ǫj = −1. For each j, by definition, the
initial Wagner tail is Wj = αja

γj .
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