The equivalence of two methods: finding
representatives of non—empty Nielsen classes

Evelyn L. Hart Ha T. Vu

Abstract

Let f : X — X be a self-map with X a wedge of circles or a compact sur-
face with boundary, so that the fundamental group of X is finitely generated
and free. In [3], Wagner presents an algorithm for extracting information
from the homomorphism induced by f on the fundamental group. This in-
formation involves the fixed point index of f and the Nielsen classes of fixed
points of f.

The step in which the representatives of Nielsen classes, Wagner tails,
are calculated is equivalent to a step in the method presented by Fadell and
Husseini in [1].

The Fadell-Husseini method was designed for closed two dimensional
CW-complexes, but the step in which they use the Fox calculus, to determine
terms in the unreduced Reidemeister trace, produces the Wagner tails and
their indices.

The equivalence of these steps was stated in [2] without proof. Further
developments in this area have caused continued interest in the techniques,
and a clarification of the equivalence is needed. Here we provide the proof
and an example.

1 Introduction

Let f : X — X be a self-map with X a wedge of circles or a compact surface with
boundary, so that the fundamental group of X is finitely generated and free. Let
F; be the free group on r generators, and let f. : F. — F, be the homomorphism
induced by the map f.
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Consider a generator a of F,. The word f.(a) contains information regarding
algebraic representatives of Nielsen fixed point classes as well as contributions to
the fixed point index of such classes. See [2] for details.

As described in Section 2, Wagner’s algorithm produces initial subwords of
f«(a), called initial Wagner tails Wj, ..., W, which are algebraic representatives
of non-empty Nielsen fixed point classes. In addition, the algorithm finds contri-
butions toward the index of each such class, with €; € {—1,1} being the contri-
bution of W; to the index of the class containing the word W;.

We use here the notation that corresponds to the Reidemeister action f,(a) =
WjaWj_l. When comparing with papers that use a different notation, slight ad-
justments must be made.

In Section 4, we present the relevant step from the The Fadell-Husseini method
from [1]. The Fox derivative applied to the word f,(a) produces an element of
Z|F], and the coefficients contribute to the index of the related Nielsen fixed
point classes.

Our main result is that these two calculations produce the same information.

Theorem 1.1. [Main Result] With the notation given above, we have

dfc(a)
o j;“?jwf'

Note that, for the Fadell-Husseini method, this term contributes to the trace
in dimension 1 for the alternating sum that is the Fox trace. Thus of géa) appears

with a coefficient of —1 in the Fox trace.

2 Determining Initial Wagner Tails

Let G = {a1,...,a,} be a set of generators for F.. Leta € G. Assume that atl
occurs exactly n times in the word f,(a). Then there are (possibly trivial) elements
ug, Ui, ..., Uy in the free group generated by G\{a} and exponents €; = +1 such
that fi.(a) = upa® uyauy - - - aruy,.

Let a; be the initial segment of f.(a) that occurs before the j-th occurrence of
a=!in f,(a). Thatis, let aj = uoa®uyauy - - - uj_q. The initial Wagner tail W; is
given by

o lX]‘ if €]' = 1,
Wi { zxja_l if j =—1.

Also, the corresponding fixed point has index —e¢;.

3 Example, Part I:

Let G = {a,b,c,d}. Suppose that f.(a) = b>a>cb~'a=2d.
We have three occurrences of a and two occurrences of a~! in f.(a), and thus
n = 5. The table below provides for each j the index ¢; and the initial Wagner tail,

W;.
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j| € o Wi
1] 1 b b
211 boa b°a
3| 1 boa? boa?
4| —1| b°achb~1 badch a1
5| —1|badch a1 | bPadch—1a2

4 Using the Fox Derivative

The Fadell-Husseini method, as described in [1] and in [2], is applied to closed
surfaces with one-relator fundamental groups. By using zero as the trace in
dimension two, the same method can be applied to the spaces considered by
Wagner.

Fadell and Husseini use the Fox derivative of f,(a), defined below, to calcu-
late the trace in dimension one of the Fox trace. This Fox trace is the unreduced
version of the Reidemeister trace used to determine the Nielsen number of f.

Let G = {ai,...,a,} be a set of generators for F.. The Fox derivatives for

. . d
words in F, are defined as fOIIOWS' For any aj,a; € g3 81 =0 a—Z] = ij; and, for

any u,v € F, a%(uv) = au + uaz’ Then au is a functlon from F; to the free Z
module over F,.

Proposition 4.1. For any w € F, and any a € G, we have a“é = —w—laa—f.

Proof. Note that0 = 3 = 2 (1) = %% +w_1%i‘; The result follows. m

Proposition 4.2. Leta € G and u € F, such that u is in the free group generated
by G\{a}. Then & (1) =0, 2 (au) = 1,and & (a 'u) = —a~".

Proof. If u = 1, the result follows from the definition and from Proposition 4.1.

Otherwise, we can express u uniquely as a reduced word x1x; . .. x¢ so that for
each i either x; € G\{a} or x;~' € G\{a}.

We induct on k. Suppose u = x; € G\{a}. We have that 3—2‘ = 0 because
x1 # a*1. For larger k we have u = (x1x7...xx_1)x, so that by induction

ou  0X1X3...Xg_ ox
52%4—3@}?2 X 1ak—O+(X1X2...xk_1)(0)20.
ou __
Thus §; = 0.
From this we have %4 = % 4 49 — 1 4 ()(0) = 1. Similarly, %
_13—2‘ =g 14 (a‘l)(O) = g1 ]

Proposition 4.3. Let a € G and u € F, such that u is in the free group generated
by G\{a}. Then & (ua) = u,and < (ua=') = —ua='.
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Proof. Because u is in the free group generated by G\{a}, the same is true
for u~1. By Proposition 4.1 and Proposition 4.2, we have 2 (ua) = % + 49 =
0+ (u)(1) = u.

—1
Similarly, 2 (ua=!) = 3 + u%— =0+ (u)(—a~') = —ua~". m

Proposition 4.4. Leta € G and ug, u; € F, such that 1y and u; are in the free group

generated by G\ {a}. We have that 2 (ugau;) = ug and & (uopa'uy) = —uga™".
Proof.
Note that 2 (ugauy) = & (upa) + uoa (u1) = ug + (1oa)(0) = uo. Similarly,
L (upa=luy) = L (upa™) +upa 1L (ug) = —upa~' + (upa=1)(0) = —upa~'. m

Leta € G and w € F,. For some n there are possibly trivial words ug, 11, ..., uy
in the free group generated by G\ {a} and exponents ¢; = +1 such that
W = upa“ u1auy - - - aruy,.

Proposition 4.5. With w as above,
ow & .
= . Tyq a5y _1a%i
e Z{e]uoa uy - -atujqali,
]:

where v; = 0ife; =1,and y; = —1ife; = —1.

Proof. We induct on n. The base case is proven in the propositions above. Sup-

P prop p
posethatn = k+1.Letw = upa® uya®?uy - - - a+luy 1, and let @ = upa“ u1a®?uy - - -
a%kuy. Then w = @wa+1uy, 1. We have

ow  0Wwa +lup,; 0w _dalup,y 0w "
_—— = _— — = — +1
oa oa oa tw oa oa + @ (€xs1 )

k
= <Z €juoatuy - - -aef—luj_la"’f>
j=1

€ €
+ (uoauy - - - a%uy) (€4 1a7+1)
k+1
= ) €uoatuy -+ -atu;_1a’.0]
j=1

5 Example Part 2:

Again, let G = {a,b,c,d} and f.(a) = bPa’cb~la=2d.

We see that ug = b°, 7 = up = 1, u3 = cb™, uy = 1, and us = d. Also,
€1=€6 =€e3=1,andeg = €5 = —1.

By Proposition 4.5, we have

ofxla) _ s +b°a+ba* —b°acb a7 — bPaPch a2
oa '
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6 The Main Result

Theorem 1.1 With the notation given above, we have

8f* i

Proof. First we use the earlier notation to express f«(a) as f.(a) = uga u1a®u;
-+ a°mu,. In Proposition 4.5, we replace w with f.(a) and note that for each j we
have a; = upa® u1a®us - - ~a€f—1u]~_1 so that

af* Z ejaa’,

where 7; = 0if ¢, = 1, and y; = —1if ¢; = —1. For each j, by definition, the
initial Wagner tail is W; = a;a"’. |

Acknowledgements: We thank Robert F. Brown and Phil Heath, for requesting
that these details appear in print, and Colgate University for supporting research
by undergraduates. We are also grateful to the referee for suggesting improve-
ments in some of the proofs.

Supported by: Colgate University NASC Division funds for summer research by
undergraduates.

References

[1] Fadell, E. and Husseini, S. The Nielsen number on surfaces, Contemp. Math. 21
(1983) 59-98.

[2] Hart, E. Algebraic techniques for calculating the Nielsen number on hyperbolic sur-
faces, in Handbook of Topological Fixed Point Theory, ed. R.F. Brown, M. Furi, L.
Gorniewicz, and B. Jiang, Springer, 2005, 463—487.

[3] Wagner, ]J. An algorithm for calculating the Nielsen number on surfaces with
boundary, Trans. AMS 351 (1999) 41-62.

Department of Mathematics
Colgate University

Hamilton NY 13346-1398
ehart@colgate.edu ~ hvu@colgate.edu



